Introduction
This manual provides information needed to operate and understand the chassis and its components. More detailed information is contained in the *Owner’s Warranty Information for North America* booklet, and in the vehicle’s workshop and maintenance manuals.

Custom-built Freightliner chassis are equipped with various chassis and cab components. Not all of the information contained in this manual applies to every chassis. If parts on your chassis differ from those shown, they may have been installed by the body builder.

The safety or performance of your vehicle could be adversely affected by the installation of nonstandard components. Note the limitations and specifications provided in the vehicle and chassis manuals, and consult your selling dealer before making any alterations to the vehicle or chassis.

For your reference, keep this manual in the vehicle at all times.

IMPORTANT: Descriptions and specifications in this manual were in effect at the time of printing. For the most up-to-date information, visit freightliner.com for the latest version of the driver’s and maintenance manuals. Freightliner Custom Chassis Corporation reserves the right to discontinue models and to change specifications or design at any time without notice and without incurring obligation. Descriptions and specifications contained in this publication provide no warranty, expressed or implied, and are subject to revisions and editions without notice.

Environmental Concerns and Recommendations
Whenever you see instructions in this manual to discard materials, you should first attempt to reclaim and recycle them. To preserve our environment, follow appropriate environmental rules and regulations when disposing of materials.

IMPORTANT: Modifications to fuel systems, emission related components, or air conditioning systems may constitute a noncompliant EPA or CARB vehicle and such actions are prohibited.

Data Logging
This vehicle is equipped with a control module that performs data logging capabilities.

This vehicle is equipped with one or more devices that record specific vehicle data and may perform some of the same functionality as a regulated Event Data Recorder but the device(s) are not subject to, nor designed pursuant to, 49 C.F.R. Part 563.

The type and amount of data recorded varies depending on how the vehicle is equipped (such as the brand of engine, if an air bag is installed, or if the vehicle features a collision avoidance system, etc.). GPS location data, fault codes, and other technical data may be recorded.

This data may help provide a better understanding of the circumstances of a crash.

Personal data such as name, gender, and age are not recorded. However, other parties such as law enforcement, could combine the data logger’s contents with the type of personally identifying data routinely acquired during a crash investigation.

Emissions and Fuel Efficiency Compliance
This vehicle must be regularly inspected and maintained as indicated in the *Shuttle Bus Chassis Maintenance Manual*, and in the Pre- and Post-Trip Inspections and Maintenance chapter in this manual, in order to continue satisfactory performance and ensure coverage of the vehicle under the manufacturer’s warranty.

Many maintenance procedures ensure that the vehicle and engine continue to comply with applicable emissions standards. Maintenance procedures, using components engineered to comply with greenhouse gas emissions and fuel efficiency regulations, may be performed by an authorized Daimler Truck North America dealer, an independent outlet, or the vehicle owner or operator.

The vehicle owner is responsible for determining the suitability of replacement components to maintain compliance with federal and local jurisdictional regulations. Components including, but not limited to, low-rolling resistance tires are specifically designed and manufactured to exacting standards for regulatory
fuel efficiency and greenhouse gas emissions compliance. It is important that these components are always replaced with components that meet or exceed the performance of the originally installed components.

Customer Assistance Center

Having trouble finding service? Call the Customer Assistance Center at 1-800-385-4357 or 1-800-FTL-HELP. Call night or day, weekdays or weekends, for dealer referral, vehicle information, breakdown coordination, or Fleetpack assistance. For specification requests and all other concerns and inquiries, the Customer Assistance Center is available 24 hours a day, seven days a week. Our people are knowledgeable, professional, and committed to following through to help you keep your vehicle moving.

Reporting Safety Defects

Vehicles domiciled in the USA that are thought to have a defect which could cause a crash or could cause injury or death, you should immediately inform the National Highway Traffic Safety Administration (NHTSA) in addition to notifying Freightliner Custom Chassis Corporation.

If the NHTSA receives similar complaints, it may open an investigation, and if it finds that a safety defect exists in a group of vehicles, it may order a recall and remedy campaign. However, NHTSA cannot become involved in individual problems between you, your dealer, or Freightliner Custom Chassis Corporation.

To contact NHTSA, call the Vehicle Safety Hotline toll-free at 1-888-327-4236 (TTY: 1-800-424-9153).
To e-mail NHTSA, go to www.safercar.gov.
Contact NHTSA by mail at: Administrator, NHTSA Headquarters, 1200 New Jersey Avenue SE, West Building, Washington, DC 20590.

For more information about motor vehicle safety, go to www.safercar.gov.

Vehicles domiciled in Canada that are thought to have a defect that could cause a crash, injury, or death, should immediately be reported to Transport Canada and Freightliner Custom Chassis Corporation.

If Transport Canada receives similar complaints, it may open an investigation; if it finds that a safety defect exists in a group of vehicles, it may order a recall and remedy campaign. However, Transport Canada cannot become involved in individual problems between you, your dealer, or Freightliner Custom Chassis Corporation.

To contact Freightliner Custom Chassis Corporation regarding concerns about a specific vehicle, call the Customer Assistance Center at 1-800-385-4357 or 1-800-FTL-HELP.

To contact Transport Canada, call the Defect Investigations and Recalls Division toll-free in Canada at 1-800-333-0510 or 1-819-994-3328 in the Gatineau-Ottawa area or internationally.

Contact Transport Canada by mail at: Transport Canada, 330 Sparks Street, Ottawa, Ontario, K1A 0N5 Canada.

The following websites contain more information on Canadian recalls:

English: www.tc.gc.ca/recalls.

For additional road safety information, visit the Road Transportation website:

English: www.tc.gc.ca/en/services/road
French: www.tc.gc.ca/fr/services/routier
STI-472-7 (06/18/2022)
A24-01452-000
Printed in U.S.A.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Environmental Concerns and Recommendations, Data Logging, Emissions and Fuel Efficiency Compliance, Customer Assistance Center, Reporting Safety Defects</td>
<td>Foreword</td>
</tr>
<tr>
<td>1 Vehicle Identification</td>
<td>1.1</td>
</tr>
<tr>
<td>2 OptiView Instrument Panel</td>
<td>2.1</td>
</tr>
<tr>
<td>3 Ametek Instrument Panel</td>
<td>3.1</td>
</tr>
<tr>
<td>4 Instruments</td>
<td>4.1</td>
</tr>
<tr>
<td>5 Controls</td>
<td>5.1</td>
</tr>
<tr>
<td>6 Engines</td>
<td>6.1</td>
</tr>
<tr>
<td>7 Transmissions</td>
<td>7.1</td>
</tr>
<tr>
<td>8 Steering System</td>
<td>8.1</td>
</tr>
<tr>
<td>9 Brake Systems</td>
<td>9.1</td>
</tr>
<tr>
<td>10 Pre- and Post-Trip Checklists</td>
<td>10.1</td>
</tr>
<tr>
<td>11 Pre- and Post-Trip Inspections and Maintenance</td>
<td>11.1</td>
</tr>
<tr>
<td>12 Cleaning and Care</td>
<td>12.1</td>
</tr>
<tr>
<td>13 In an Emergency</td>
<td>13.1</td>
</tr>
<tr>
<td>14 Towing</td>
<td>14.1</td>
</tr>
<tr>
<td>15 Specifications</td>
<td>15.1</td>
</tr>
<tr>
<td>Index</td>
<td>I.1</td>
</tr>
</tbody>
</table>
Vehicle Identification

Component Information Label .. 1.1
Vehicle Identification Number .. 1.1
Emissions Labels ... 1.1
Component Information Label

NOTE: Labels shown in this chapter are examples only. Actual specifications may vary from vehicle to vehicle.

The component information label lists the manufacturer, month and year of manufacture, vehicle identification number (VIN), gross vehicle weight rating (GVWR), front and rear gross axle weight ratings (GAWR), and tire and wheel information. It also indicates if the vehicle has been certified as compliant with Federal Motor Vehicle Safety Standard (FMVSS). See Fig. 1.1.

The tire and rim portion of the component information label certifies suitable tire and rim combinations that can be installed on the vehicle for the given gross axle weight rating. Tires and rims installed on the vehicle at the time of manufacture may have a higher load capacity than that certified by the tire and rim label. If the tires and rims currently on the vehicle have a lower load capacity than that shown on the tire and rim label, then the tires and rims determine the load limitations on each of the axles.

Incomplete chassis intended for service in the U.S. have an incomplete vehicle certification label attached by the final-stage manufacturer. This label will be attached to the incomplete vehicle document included with the vehicle, and certifies that the vehicle conforms to all applicable FMVSS regulations in effect on the date of completion.

Vehicle Identification Number

The chassis vehicle identification number (VIN) is stamped on a metal plate permanently attached to the vehicle, and the last six digits (designating the chassis serial number) are stamped into the metal frame. See Fig. 1.2. A VIN label is also mounted by the body builder. Mounting locations vary, to include the glove box. See Fig. 1.3.

Vehicle Identification Number

The chassis vehicle identification number (VIN) is stamped on a metal plate permanently attached to the vehicle, and the last six digits (designating the chassis serial number) are stamped into the metal frame. See Fig. 1.2. A VIN label is also mounted by the body builder. Mounting locations vary, to include the glove box. See Fig. 1.3.

Emissions Labels

Aftertreatment System Indicators Label

Model year 2007 and later diesel engines in vehicles domiciled in the U.S. or Canada are required to meet all EPA exhaust gas emission regulations effective as per the applicable emission model year, and are equipped with an emission aftertreatment system (ATS). Vehicles domiciled outside of the U.S. and Canada may not have aftertreatment equipment, depending upon local statutory emissions guidelines.

A reference label included with the driver’s documentation package contains important warning indicators in the instrument cluster that pertain to the ATS. See Fig. 1.4. See Table 1.1 and Table 1.2 for additional EPA information.

It is a violation of U.S. federal law to alter exhaust plumbing, ATS, or other components in any way that
would bring the engine/vehicle out of compliance with certification requirements [Ref: 42 U.S.C. S7522(a) (3)]. It is the owner’s responsibility to maintain the vehicle so that it conforms to EPA regulations.

Vehicle Emission Control Information Label

Model year 2013 and later vehicles meet requirements as specified by GHG14, GHG17 and GHG21 regulations, respectively. These vehicles are equipped with components that increase fuel efficiency and reduce greenhouse gas (GHG) emissions. Components may include, but are not limited to, low-rolling resistance tires; aerodynamic devices such as hood, vehicle speed limiters; and idle shutdown timers.

A Vehicle Emission Control Information Label indicates compliance with emission regulations. See Fig. 1.5. Among other GHG relevant information the label indicates the emission model year of the vehicle. It is the owner’s responsibility to maintain the vehicle so that it conforms to EPA and National Highway Traffic Safety Administration (NHTSA) regulations.
EPA Regulations

EPA Regulations

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Emissions Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA07 (Reduction of nitrogen oxides (NOx) emissions to 1.1 g/bhp-hr, and particulate matter emissions to 0.01 g/bhp-hr)</td>
<td>Aftertreatment device (ATD) containing a diesel particulate filter that traps soot and ash.*</td>
</tr>
<tr>
<td>EPA10 (Reduction of NOx emissions to 0.2 g/bhp-hr)</td>
<td>EPA07-type ATD, with additional selective catalyst reduction (SCR) technology that utilizes diesel exhaust fluid (DEF) to convert NOx to nitrogen and water vapor.</td>
</tr>
<tr>
<td>GHG14 (Reduction of greenhouse gas emissions)</td>
<td>Fuel efficiency components including, but not limited to, engines, tires, aerodynamic components, vehicle speed limiters, and idle reduction timers specifically designed to meet regulatory fuel efficiency and greenhouse gas emissions standards.</td>
</tr>
<tr>
<td>GHG17</td>
<td>Fuel efficiency components including, but not limited to, engines, tires, aerodynamic components, vehicle speed limiters, and idle reduction timers specifically designed to meet regulatory fuel efficiency and greenhouse gas emissions standards.</td>
</tr>
<tr>
<td>GHG21</td>
<td>GHG14/17 components plus additional components including, but not limited to, transmissions, axles, predictive technologies, idle reduction technologies for vocational vehicles, tire pressure monitoring systems.</td>
</tr>
</tbody>
</table>

* Cummins, Detroit, and Mercedes-Benz ATD’s are also equipped with a diesel oxidation catalyst to break down pollutants.

Table 1.1, EPA Regulations
Emission Regulations by Model Year

<table>
<thead>
<tr>
<th>Model Year</th>
<th>Engine Regulation</th>
<th>Vehicle Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007–2009</td>
<td>EPA07</td>
<td>N/A</td>
</tr>
<tr>
<td>2010–2012</td>
<td>EPA10</td>
<td>N/A</td>
</tr>
<tr>
<td>2013–2015</td>
<td>EPA10, GHG14</td>
<td>GHG14</td>
</tr>
<tr>
<td>2016</td>
<td>EPA10, GHG17</td>
<td>GHG14</td>
</tr>
<tr>
<td>2017–2020</td>
<td>EPA10, GHG17</td>
<td>GHG17</td>
</tr>
<tr>
<td>2021–and later</td>
<td>EPA10, GHG21</td>
<td>GHG21</td>
</tr>
</tbody>
</table>

Table 1.2, Emission Regulations by Model Year

Fig. 1.5, Vehicle Emission Control Information Label
OptiView Instrument Panel
OptiView™ Instrument Panel

NOTE: The OptiView instrument panel can be customized by the body builder. The location of gauges and icons on the instrument panel may vary from what is shown here, but the operation of the instrument panel is the same.

The OptiView instrument panel provides the driver with engine and vehicle information. It is comprised of standard and optional gauges, an audible alarm, a driver message center, information options (menu-structured format), and warning and indicator lamps (also known as telltales). Warning and indicator lamps illuminate in red (danger), amber (caution), green (status advisory), or blue (high-beam headlights active).

See Fig. 2.1 for a typical instrument gauge panel and Fig. 2.2 for the OptiView warning lamps. See Chapter 4 for detailed warning lamp descriptions.

Ignition Sequence

When the ignition is turned on, OptiView performs a self-test. Observing the ignition sequence is a good way to ensure the OptiView panel is functioning properly.

IMPORTANT: Do not crank the engine until the OptiView self-check is complete.

When the ignition is in the ON position, the following actions should occur:

- warning and indicator lamps illuminate for approximately three seconds, then are extinguished;
- seatbelt indicator lamp remains on for an additional five seconds after the other indicator lamps are extinguished;
- audible alarm sounds until the self-test is completed;
- if any faults are detected, an error message will display in the menu area of the instrument panel.

When the self-test is complete, all warning lamps and indicators are extinguished.

Audible Alerts

An audible alert sounds during the ignition sequence until the self-test is completed, and whenever one of the following conditions exists:

- Air pressure falls below 65 psi (448 kPa).
- Anytime the low air warning lamp is activated.

Fig. 2.1,Typical Instrument Panel, EPA10 and Newer Engines
During start-up until air pressure in the tanks reaches approximately 70 to 76 psi (483 to 524 kPa).

When the parking brake is engaged. The parking brake will not disengage until the air pressure has reached 65 psi (448 kPa).

Emergency engine shutdown is activated.

The parking brake is applied and the transmission is not in neutral.

The transmission is in neutral or the ignition is in the OFF position, and the parking brake is not set and the service brake is not depressed.

Anytime the ignition is turned OFF and the panel lamps are still illuminated.

Emergency Shutdown

The instrument panel will shut down if the voltage supply is not within the normal operating range of 9 to 16 volts for more than 10 milliseconds. During
emergency shutdown, the gauge pointers freeze, the display goes blank, and the lamps turn off. When power is restored to within the normal operating range following an emergency shutdown, a self-test is performed before resuming normal operation.

Gear Shift Position

The highlighted letter shown in the instrument panel indicates the gear shift position; D for drive, N for neutral, and R for reverse. See 2.1, Item 10. If none of the positions are highlighted, a failure mode has occurred and could be due to a communication problem with the transmission.

Drive Modes

When standard automatic transmission mode is used, the current gear position appears next to the D indicator, as shown in Fig. 2.3. When manual transmission mode is used, the indicator changes to M with the target gear position next to it; for example M5 5. To the right of the manual indicator, the actual gear position appears in blue.

When the transmission mode is changed by the driver on the transmission multifunction control, a message appears briefly in the instrument panel. The message reads either ‘performance’ or ‘economy.’ See Fig. 2.4.

When the engine brake engages, the indicator and text turn green. See Fig. 2.6. While the engine brake is engaged, the driver can adjust the engine brake level using the transmission multifunction control on the right of the steering wheel.

Menu Structure

The OptiView instrument panel is an interactive graphical display that is capable of displaying text messages and graphics to communicate information about the status and performance of the vehicle to the operator. This information is organized in a menu-structured format around the following menu screens:

- trip 1
- trip 2
- gauges
- fuel economy
- cruise control
- tire pressure
- vehicle configuration
- diagnostics
- menu off

The menus appear at the bottom-center of the instrument panel as shown in Fig. 2.1. When the instrument panel displays a message to the operator, it appears in the menu area.

Menu Navigation

Navigating through the system menus is done with the buttons on the left side of the steering wheel. See Fig. 2.7. Press the menu up or menu down arrows to highlight a menu, then press the OK button to enter the highlighted menu. Press the “back” button to go back to the last menu that was displayed. Pressing the menu cycle button displays the next three menu options with each button press. Press the “home” button to return to the menus in their original order.

Trip Menus

From the main menu, highlight "Trip 1" and press the OK button. The top three items in the TRIP 1 screen appear. See Fig. 2.8. Press the "down" arrow to view the bottom three items in the TRIP 1 screen. See Fig. 2.9. To reset the TRIP 1 information, press and hold the OK button.
The Trip 2 menu functions the same way after highlighting "Trip 2" and pressing the OK button. See Fig. 2.10 for the top three items in the TRIP 2 screen and Fig. 2.11 for the bottom three items in the TRIP 2 screen. To reset the TRIP 2 information, press and hold the OK button.

Gauge Menus

The driver can choose to display up to three gauge menus in the menu area if desired. See Fig. 2.12.

From the main menu, select “Gauges” and press the button.

Fig. 2.4, Transmission Mode Message

The Trip 2 menu functions the same way after highlighting "Trip 2" and pressing the OK button. See Fig. 2.10 for the top three items in the TRIP 2 screen and Fig. 2.11 for the bottom three items in the TRIP 2 screen. To reset the TRIP 2 information, press and hold the OK button.

Gauge Menus

The driver can choose to display up to three gauge menus in the menu area if desired. See Fig. 2.12.

From the main menu, select “Gauges” and press the button.
OK button. Use the "down" arrow to highlight one of the three currently viewed gauges, then press the OK button and the highlight will flash. Use the "up" and "down" arrows to scroll through the available gauges. Once you have selected the gauge to view, press the OK button again. The highlight stops flashing and that gauge is set. Use the same process to change the other two gauge menus.
Fuel Economy Menu

From the main menu, select "Fuel Economy" and press the OK button. See Fig. 2.13, for an example of the fuel economy menu.

The red bar represents the average fuel economy for this trip since the last reset.

The blue bar represents the instantaneous fuel economy that is reported by the engine.

Press and hold the OK button to reset the distance to empty value and the average miles per gallon/kilometers per liter.

Cruise Control Menu

NOTE: Standard cruise control is always available, however to use adaptive cruise control, the driver must select one of the three preset distance options. See Fig. 2.15, items 2, 3, and 4.

See Fig. 2.14 for the cruise control menu location.

Standard Cruise Control

Standard cruise control automatically maintains a desired vehicle speed. Use the cruise control set button on the steering wheel once a desired speed is reached. Pressing the brake pedal or switching the cruise control button to OFF deactivates the system.

Adaptive Cruise Control

Adaptive cruise control uses radar to detect vehicles ahead and automatically adjusts the vehicle speed to maintain a safe distance.

When another vehicle is detected, a car appears at the top of the driver display screen along with the speed, distance and estimated time to reach that vehicle. See Fig. 2.15. As the other vehicle gets within a set distance, it is highlighted yellow to signal a warning range, and then highlighted red to signal a danger range.

An alarm also activates to notify the driver of the distance between the two vehicles. The driver can select the distance—far, near, or close—when the alarm is triggered. See Fig. 2.15.

To use adaptive cruise control, use the down arrow on the steering wheel to select "Cruise Control" from the main menu. Then use the down arrow on the steering wheel to select the alarm distance, items 2, 3, and 4 in Fig. 2.15. The adaptive cruise control indicator activates in the instrument panel and "Use Standard CC" appears in the display above the alarm distance options. If the driver wants to use standard cruise control, they can select "Use Standard CC" from the cruise control menu.

Tire Pressure Menu

The driver can select tire pressure from the main menu and quickly check tire pressure and temperature. A tire status of OK, LOW, HIGH, or LEAK appears. See Fig. 2.16.

When tire pressure is selected, an overhead view of the vehicle is displayed with the tire pressure and temperature indicated for each tire; the tire pressure appears in bold above the temperature reading. Tires within a normal pressure range are white. Tires with low or high pressure or a tire with a leak detected are yellow. See Fig. 2.17.

Tire Warning

Vehicles equipped with a tire pressure monitoring system (TPMS) display a warning screen when a fault is detected. An overhead view of the vehicle is shown along with the tire pressure and temperature of each tire and a message—LOW PRESSURE, HIGH PRESSURE, or LEAK DETECTED—at the bottom of the driver display screen. See Fig. 2.18. To exit the tire warning screen, press the OK button on the left side of the steering wheel.

Tow Vehicle

If a tow vehicle or trailer axle is detected, the system automatically displays an image behind the recreational vehicle. Press the "up" or "down" arrow to
switch between screens of the recreational vehicle and the tow vehicle. See Fig 2.19 and Fig 2.20.

Vehicle Configuration Menu

Selecting "Vehicle Configuration" from the main menu allows the driver to change system settings for bluetooth, dash brightness, fob programming, steering effort, and units. See Fig. 2.21.

Bluetooth

The bluetooth menu is used to connect devices, change the priority of connected devices, and remove a device's connectivity permissions. To set up a device, use the "down" arrow to select "Vehicle Configuration", then "Bluetooth" and press OK.

From the bluetooth menu, shown in Fig. 2.22, choose "Pair Device". The information center searches for available devices. See Fig. 2.23. When devices are found, the driver can choose which one they want to pair with the information center. Once device pairing is confirmed, press OK on the steering wheel to exit back to the bluetooth menu.
A. The tire pressure and temperature of each tire are shown.

A. The tire warning screen indicates that three tires have low pressure, indicated by the yellow tires and pressure readings on the driver display screen.
A. A tow vehicle or trailer is detected and an image appears behind the recreational vehicle. Press the "up" or "down" arrow to switch between screens of the recreational vehicle and the tow vehicle.

Fig. 2.19, Tow Vehicle Detected

A. Tire pressure and temperature are shown for the vehicle being towed.

Fig. 2.20, Tow Vehicle Tire Pressure Screen

Fig. 2.21, Vehicle Configuration Menu
Once a device is paired with the information center, incoming phone calls appear in the center of the display screen. See Fig. 2.24. The driver can accept or decline the incoming call using the phone controls on the steering wheel.

Call status appears in the top center of the display screen while a call is active and shows the call time, shown in Fig. 2.25, or just after a call ends with a 'call ended' message.

Dash Brightness
To change the dash brightness, use the "down" arrow to select "Vehicle Configuration", then "Dash Brightness" and press OK. Press the up arrow on the steering wheel to increase dash brightness or the down arrow to decrease it. See Fig. 2.26.

Fob Programming
To reset the fob programming, use the "down" arrow to select "Vehicle Configuration", then "Fob Programming" and press OK. Use the "down" arrow to select reset to default. For additional key fob information, see Chapter 5.

Steering Effort
To adjust the steering wheel sensitivity, use the "down" arrow on the steering wheel to select "Vehicle Configuration", then "Steering Effort" and press OK. See Fig. 2.27, for an example of the steering effort menu. The driver can adjust the steering wheel sensitivity by pressing the up arrow on the steering wheel for more (more effort is required to steer) and the down arrow on the steering wheel for less (less effort is required to steer). The default sensitivity is set at 3.5. The steering sensitivity adjusts and is saved by the system in real time to allow the driver to feel the result of the changes. Press the back button to display the main menu.

Units
After selecting "Vehicle Configuration", then "Units", the driver can choose standard or metric.

Mobileye
Mobileye is a safety system available on some vehicles. The following information describes the various mobileye features and whether or not the feature can be deactivated as follows. For features that can be deactivated, use the "down" arrow to select "Vehicle Configuration", and select the applicable item for deactivation.

- Forward Collision Warning
- Pedestrian Collision Warning
- Lane Departure Warning (can be deactivated)
- Speed Limit Indicator (can be deactivated)
- Headway Monitoring and Warning
- Intelligent High-Beam Control (can be deactivated)
- Vision System Fault
- Vision System Communication Failure
Forward Collision Warning
A series of high-pitched beeps sound 2.7 seconds before a possible collision with the vehicle in front and the red forward collision icon appears in the instrument panel. See Fig. 2.28.

Pedestrian Collision Warning
The pedestrian collision warning is operational during daylight hours when the vehicle is traveling less than 31 mph (50 km/h). It alerts the driver with a red flashing icon and series of beeps when a pedestrian crosses in front of the vehicle's path. A green icon
activates when a pedestrian is detected in the danger zone but the time to collision is not critical. See Fig. 2.29.

Lane Departure Warning
A flashing amber lane marker appears in the instrument panel along with a rumble strip sound when the vehicle unintentionally departs (with no turn signal) from the driving lane while traveling over 40 mph (64 km/h). The lane markings appear amber on the side the vehicle is veering toward. See Fig. 2.30. The driver can choose to deactivate this feature in the "Vehicle Configuration" menu.

Speed Limit Indicator
If detected, a speed limit sign is shown continuously under the numeric speedometer reading. See Fig. 2.31. If speed limit data is not available, the speed limit indicator is not active. The driver can choose to deactivate this feature in the "Vehicle Configuration" menu.

Headway Monitoring and Warning
When a vehicle is detected within a predefined headway (distance), the forward collision icon displays continuously. The icon appears red with an amount
of time (in seconds) and a chime sounds when the headway is equal to or less than the predefined headway time threshold. The icon is green when a vehicle is detected and the headway is within the predefined time threshold. See Fig. 2.32.

Intelligent High-Beam Control

NOTE: The left-hand stalk switch must be in the high-beam position in order for the intelligent high-beam option to work.

When intelligent high-beam control is enabled and the vehicle is traveling faster than 21 mph (34 km/h), the high-beam headlights automatically activate and deactivate on dark roads when there is no nearby traffic. The high-beam icon appears blue in the instrument panel when enabled and active; the icon is grey when the intelligent high-beam control is enabled but inactive. See Fig. 2.33. The driver can choose to deactivate this feature in the "Vehicle Configuration" menu.
Vision System Fault
Low visibility, no communication, temperature, and error codes from the mobileye system activate a vision system fault message in the instrument panel. See Fig. 2.34.

Vision System Communication Failure
When the mobileye system experiences a communication failure, a message appears in the instrument panel. See Fig. 2.35.
Diagnostics Menu

From the main menu, select "Diagnostics" and press the OK button. Three sub-menus appear—Faults, Internal Diagnostics, and System Information.

Faults

The Faults sub-menu, shown in Fig. 2.36, displays the following faults should they occur:

- antilock brake system
- air pressure module
- engine
- instrumentation
- transmission

After selecting "Diagnostics", "Faults" appears in the list of sub-menus and is highlighted. Press the OK button to view any active faults. See Fig. 2.37, for an example of a fault displayed from the instrumentation.

Fig. 2.31, Speed Limit Indicator

The icon is green when a vehicle is detected and the headway is within the predefined time threshold. The icon turns red with a time in seconds when there is a chance of collision.

Fig. 2.32, Headway Monitoring and Warning

OptiView Instrument Panel
system. When there is no active fault(s), END OF LIST appears in the menu area. See Fig. 2.38.

Internal Diagnostics
The Internal Diagnostics sub-menu, shown in Fig. 2.39, displays internal diagnostic information with the current value from the OptiView instrument panel. Use the "down" arrow to highlight "Internal Diagnostics", then press the OK button to view the internal diagnostic information. See Fig. 2.40 and Fig. 2.41.

System Information
The System Information sub-menu shows the current software version and release date. Use the "down" arrow to highlight "System Information", then press the OK button to view the system information. See Fig. 2.42 and Fig. 2.43.
A. When the Mobileye system experiences a communication failure, a message appears in the instrument panel.

Fig. 2.35, Vision System Communication Failure Message

Fig. 2.36, Faults Sub-Menu

Fig. 2.37, Active Fault is Displayed

Fig. 2.38, No Active Fault Exists

Fig. 2.39, Internal Diagnostics Sub-Menu

Fig. 2.40, Internal Diagnostic Information Screen 1

Fig. 2.41, Internal Diagnostic Information Screen 2

NOTICE

When a memory stick with updated software is in the USB port and the OK button is pressed, the updater will start programming the OptiView instrument panel. Do not turn the ignition OFF during the programming cycle. Damage will occur to the panel if the power is turned off during the programming cycle.
The bottom line of the System Information menu indicates the current status of the software updating utility. See Fig. 2.43. In this example, the software updating utility is idle (not running).

Menu Off

If the driver selects menu off, the menu items no longer appear on the driver display screen. To view the menu items once again, press any of the arrows or the OK button on the left side of the steering wheel.
Ametek Instrument Panel

Ametek Instrument Panel .. 3.1
Ametek Instrument Panel

The following information describes a typical instrument panel manufactured by Ametek. See Fig. 3.1 for a typical instrument gauge panel, and see Fig. 3.2 for the Ametek warning lamps. See Chapter 4 for detailed warning lamp descriptions.

NOTE: These instrument panels are shown with a standard U.S. speedometer, which shows miles per hour (mph) more prominently than kilometers per hour (km/h).

Message Display Center

The message display is a graphical, backlit, liquid crystal display (LCD) that relays information to the vehicle operator. The messages displayed include:

- Odometer
- Trip Odometer 1/Trip Odometer 2
- Chassis Battery Voltage
- Instantaneous Fuel Rate
- Average Fuel Rate
- Gear Attained Status
- Transmission Temperature
- Hour Meter
- Boost Pressure
- Engine Oil Pressure
- Coolant Temperature
- Fuel Level
- Percent Engine Load
- Engine RPM

During normal operation, the LCD displays the odometer value and chassis battery voltage on the top line, and driver selected parameters, such as the trip odometer and fuel rate, on the second and third lines.

Priority Messages

Priority messages (including warning messages) are displayed in the LCD due to various inputs or data messages. Unless noted otherwise, the priority message will take over the whole screen, allowing multiple messages to be displayed in five second intervals.

Self-Test

When the ignition is turned on, a required self-test automatically begins. Gauge needles will reset to zero during the self-test, and then immediately move to the position dictated by the data received. During this time, the warning lights, alarm (buzzer), and driver display screen will also perform a self-test.

NOTE: The driver can activate or deactivate the start-up self-test by accessing the setup menu.

Menu System

The menu system is shown on the driver display screen once the self-test is finished. The menu system responds to input from the driver and remains active as long as the ignition is on. In order for the driver to operate the menu system, the ignition must be ON, and the park brake must be set (ON). The main features of the menu system are described below.

- Setup—this is used to set various parameters, which are saved when the ignition is turned off. Setup has select display units, startup screen, LCD contrast, and reset parameters.
- Maintenance—shows various maintenance intervals such as engine oil, air filter, etc.
- Diagnostics—this is used for setting and reading inputs and outputs and checking the gauges. It also shows the hardware and software version of the instrument panel, and has menus to retrieve active error codes from the engine, transmission, and ABS controllers.

NOTE: No lines can be highlighted in the menu system screen. To get to the sections that can be highlighted, press the right arrow toggle button and hold it for two seconds. The display screen will change and the options shown can then be highlighted. Once a selection has been chosen and changes are made, press the right arrow toggle button to go back to the main message display screen.

Setup Menu

Select Display Units

The set units screen allows the driver to choose between English or metric units of measurement for the displayed values. To navigate to the set units screen, see Fig. 3.3, screens H, I, and J.
Startup Screen
The startup screen selection allows the driver to turn the startup screen on or off.

LCD Contrast
Select contrast from the menu to set the LCD contrast. Use the down toggle button to set the contrast to the desired level. To navigate to the contrast screen, see Fig. 3.3, screen M.

Reset Parameters
The reset parameters screen is included with vehicles that have the Allison transmission prognostics feature.

Maintenance Menu
The maintenance menu has the following three sub menus:
- maintenance intervals
- transmission oil life remaining
- transmission oil filter life monitor

Maintenance Intervals
The maintenance intervals menu allows the driver to set the change intervals for engine oil and engine air filter. If the intervals are set to zero, the maintenance warnings must be disabled.
Transmission Oil Life Remaining
If transmission prognostics are enabled, this menu indicates how much useful oil life remains.

Transmission Oil Filter Life Monitor
If transmission prognostics are enabled, the transmission oil filter life monitor tells the driver if the transmission oil filter is clogged and in need of repair. A message will appear on the display screen as TRANS OIL FILTER FUNCTIONAL or TRANS OIL FILTER CLOGGED.

Diagnostic Menu
The diagnostic menu contains the following items:

- engine faults
- transmission faults
- ABS faults
- check outputs
- odometer diagnostics
- check gauges
- check indicators (warning lamps)
- check LCD
- check binary inputs
- check analog inputs
- check datalink
- hardware/software version

All of the items in the diagnostic menu can be accessed by using the toggle buttons and selecting the auxiliary screens. Then navigate to the diagnostic sub-menu. Some of the more frequently used diagnostic menus are described further below.

Engine Faults
This screen displays engine fault codes that are received from the engine electronic control unit (ECU). To navigate to the engine fault screen, see Fig. 3.4, screen AA.
Transmission Faults
This screen displays transmission fault codes that are received from the transmission ECU. To navigate to the transmission fault screen, see Fig. 3.4, screen AB.

ABS Diagnostics
This screen displays Antilock Brake System (ABS) fault codes that are received from the ABS ECU. To navigate to the ABS diagnostic screen, see Fig. 3.4, screen AC.

Check Gauges
The check gauges screen allows the driver to set each gauge as a percentage of scale (either 0, 50, or 100%), as shown in the LCD. To navigate to the check gauges screen, see Fig. 3.5, AG screens.

Warning Lamp
The warning lamp screen allows the driver to test each warning lamp (not the vehicle load) on and then off, displaying the lamp name and status in the LCD. To navigate to the warning lamp screen, see Fig. 3.5, screen AH.

Check LCD
Selecting the check LCD screen displays the Freightliner Custom Chassis Corporation (FCCC) logo in normal and reverse video three times and then returns to the menu. To navigate to the check LCD screen, see Fig. 3.5, screen AI.

Check Binary Inputs
The check binary inputs screen displays the pin number and status of each binary input. The toggle buttons allow the driver to select each binary input. This information is continuously updated to assist in troubleshooting. To navigate to the check binary inputs screen, see Fig. 3.5, screen AJ.

Check Analog Inputs
The check analog inputs screen displays the pin number and actual value of each analog input defined in the system. The toggle buttons allow the driver to select each analog input. This information is continuously updated to assist in troubleshooting. To navigate to the check analog input screen, see Fig. 3.6, screen AK.

Check Datalink
The check datalink screen allows the driver to view all devices that communicate on the J1939, J1587, and GMLAN datalinks. To navigate to the check datalink screen, see Fig. 3.6, screen AL.

Menu Navigation
The menu navigation road maps are provided to illustrate the screens that are available in the menu system. The paths to specific screens are shown, along with instructions for using the toggle buttons to move from one screen to another. Refer to the road maps to change items shown in lines one, two, and three of the display screen, view the setup screens, diagnostics, etc. See Fig. 3.3, Fig. 3.4, Fig. 3.5, Fig. 3.6, Fig. 3.7, Fig. 3.8, Fig. 3.9, Fig. 3.10, Fig. 3.11, Fig. 3.12, Fig. 3.13, Fig. 3.14, and Fig. 3.15.

IMPORTANT: Follow the steps below to change the three items (also known as favorites) shown in the message display center. The message display center is referred to as screen C in Fig. 3.9.

1. With the vehicle in park, turn the ignition to ON, and allow the self test to complete.
2. Press the down toggle button to select an item to change. The selected item will now be highlighted.
3. Press the right toggle button once to enter the favorites display menu, shown in Fig. 3.9, as screen D.
4. Use the down toggle button to scroll through the available items.
5. Highlight the new item, then press the right toggle button. The selected item will now appear in the message display center.
Fig. 3.3, Setup Menu Screens
Diagnostics

Note 5: Screen Z scrolls to display the following items:
- ENGINE FAULTS
- TRANSMISSION FAULTS
- ABS FAULTS
- CHECK OUTPUTS
- CHECK DATA INPUTS
- ODOMETER DIAGNOSTICS
- CHECK GAUGES
- CHECK WARNING LAMPS
- CHECK LCD
- CHECK BINARY INPUTS
- CHECK ANALOG INPUTS
- CHECK DATA LINK
- VERSION INFORMATION
- EXIT

The last DIAGNOSTIC MENU remains fixed on the first line.

Down Press or
Display Next Fault

Down Press or
Display Next Fault

Down Press or
Display Next Fault

Right Press or
Down Hold

Down Press or
Display Next Fault

Right Press or
Down Hold

Down Press or
Display Next Fault

Right Press or
Down Hold

Down Press or
Display Next Fault

Right Press or
Down Hold

Down Hold or
(Right & Exit Highlighted)

Down Press or
Highlight next
line of list.
At bottom, wrap to top

Screen AE For J1587

Screen AE
MID aaa PID ppp
Parameter Name Value Units

Right Press or
Display Next Fault

Right Press or
Display Next Fault

Right Press or
Display Next Fault

Menu

Fig. 3.4, Diagnostic Menu Screens—Screen 1
Fig. 3.5, Diagnostic Menu Screens—Screen 2
Fig. 3.6, Diagnostic Menu Screens—Screen 3
Fig. 3.7, Ignition On—Normal Mode
The Self Test screens display the FCCC logo in normal video (Screen A) and in reverse video (Screen B).

Startup Screen Enabled

Screen A

Screen Displayed for 1.5 Seconds

Startup Screen Disabled

Screen B

Screen Displayed for 1.5 Seconds

DISPLAY MESSAGES

Fig. 3.8, Self Test, Ametek Panel
Fig. 3.9, Display Messages
Fig. 3.10, Auxiliary Screens
Fig. 3.11, Maintenance Menu Screens—Screen 1
Fig. 3.12, Maintenance Menu Screens—Screen 2
Note 6:
Screen AO scrolls to display the following items:
Trip Time
Idle Time
Max RPM
Max Speed
Avg Speed
Avg Fuel Economy
Reset All
Exit

Correct Passcode / Reset Trip Data

Wrong Passcode / Down Press

Right Hold A
ENTER PASSCODE
X X X X
HOLD = TO RESET DATA

Right Press

Screen AO
Trip Time xxxxxxx.x hrs
Idle Time xxxxxxx.x hrs
Max RPM xxxx RPM

Right Press

Screen AO
RESET PASSCODE
PRES 1 TO RETRY
PRES 2 TO EXIT

Right Press

Screen AO
TRIP DATA RESET
PRES = TO CONTINUE

Down Press
Highlight next line of list. At bottom, wrap to top.

Down Hold or
(Right & Exit highlighted)

Right Press

AUXILIARY SCREENS

Fig. 3.13, Trip Data
WARNING MESSAGES

Fig. 3.14, Warning Messages

IGNITION OFF

Fig. 3.15, Ignition Off (shown when ignition is keyed OFF)
4

Instruments

Warning and Indicator Lamps ... 4.1
Speedometer and Tachometer ... 4.6
Gauges .. 4.7
Warning and Indicator Lamps

The following information describes the various warning and indicator lamps found in the Ametek and OptiView™ instrument panels. See Fig. 4.1 and Fig. 4.2 for an example of the Ametek warning and indicator lamps and Fig. 4.3 for an example of the OptiView warning and indicator lamps.

The instrument cluster has an emergency buzzer that sounds when serious conditions that require immediate attention occur.

A description of the standard warning and indicator lamps are listed below.

NOTE: The following descriptions apply to each instrument panel where applicable and are listed alphabetically.

1. Maintenance Warning
2. Left-Turn Indicator
3. High Exhaust System Temperature (HEST) Lamp
4. Check Engine Warning
5. Stop Engine Warning
6. Malfunction Indicator Lamp (MIL)
7. Engine Brake Indicator
8. Wait to Start Indicator
9. ABS Warning
10. Shift Inhibit Indicator
11. Transmission Warning
12. Stop Transmission (hybrid only)
13. Diesel Particulate Filter (DPF) Lamp
14. Right-Turn Indicator
15. Fasten Seat Belt Warning
16. Air Brake Warning
17. Hydraulic Brake System Warning
18. Headlight High-Beam Indicator
19. Cruise Control Indicator
20. Parking Brake On Warning

NOTE: For more information about this indicator and the ABS system, see Chapter 9.

WARNING

If the ABS warning lights come on while driving, repair the system immediately to ensure full antilock brake capability. Operating the vehicle when the ABS needs to be serviced could cause an accident, possibly resulting in personal injury or death, or property damage.

Adaptive Cruise Control Indicator

The adaptive cruise control indicator illuminates under the following conditions:

- The adaptive cruise control is activated.
- When a failure is detected, the adaptive cruise control indicator illuminates along with an exclamation (!) point.
Air Brake Warning
The air brake warning lamp activates if the pneumatic brake system air is low, or if the air suspension is low.

Automatic Traction Control (ATC) Indicator
The ATC indicator illuminates during wheel spin and when the ATC system is active. If the ATC system is disabled, the indicator appears on the instrument panel with a line across the letters.

Bluetooth Smartphone Indicator (OptiView only)
The bluetooth smartphone indicator displays reception bars and the battery level of the connected device.

Check Engine Warning
The check engine warning indicator illuminates when certain faults are detected. If a critical engine condition exists (for example, low oil pressure or high coolant temperature), the check engine indicator will illuminate to alert the driver to correct the condition as soon as possible. If the condition gets worse, the stop engine indicator will illuminate. See the Cummins Operation and Maintenance Manual for more information.
NOTE: If the check engine indicator illuminates during vehicle operation, take the vehicle directly to an authorized Freightliner service facility.

Cruise Control Indicator

The cruise control indicator illuminates when the cruise control is activated.

Diesel Particulate Filter (DPF) Lamp

A solid illumination indicates a regeneration is required. Change to a more challenging duty cycle, such as highway driving, to raise exhaust temperatures for at least 20 minutes, or perform a stationary regeneration. See Parked Regen for details.

A blinking lamp indicates that a stationary regeneration is required immediately. An engine derate and shutdown will occur. See Parked Regen for details.
Economy Mode Indicator (OptiView only)
The economy mode indicator displays an E when the driver changes the transmission mode to economy.

Electronic Stability Control (ESC) Indicator
The electronic stability control (ESC) indicator illuminates when the ESC system activates.

Emergency Buzzer
The emergency buzzer sounds during the ignition sequence and whenever one of the following conditions exists:

- The coolant temperature rises above the preset level specified by the engine manufacturer.
- The engine oil pressure falls below the preset level specified by the engine manufacturer.
- The air pressure falls below the preset level, which is 65 psi (448 kPa).
- The parking brake is set with the vehicle moving at a speed greater than 2 mph (3 km/h).

Engine Brake Indicator
The engine brake indicator illuminates when the engine brake is applied.

Fasten Seat Belt Warning
The fasten seat belts warning indicator illuminates for 30 seconds after the ignition switch is turned on.

Fog Lamp Indicator
The fog lamp indicator illuminates when the fog lamps are on.

Forward Collision System Indicator (OptiView only)
The forward collision system indicator illuminates only when the system is not available.

Forward Collision Warning (OptiView only)
The red forward collision indicator illuminates and a series of high-pitched beeps sound alerting the driver to a possible collision with the vehicle in front.

Headlight/High-Beam/Automatic High-Beam Indicator
Some vehicles have a green headlight indicator that illuminates when the headlights are on.
The high-beam indicator (sideways beam icon) illuminates blue when the headlight high beams are on.
Vehicles equipped with intelligent high-beam headlights have a grey headlight indicator when the intelligent high-beam control is enabled but inactive.

High Coolant Temperature Warning
The high coolant temperature indicator and emergency buzzer activate whenever the coolant temperature goes above a preset maximum specified by the engine manufacturer.

High Exhaust System Temperature (HEST) Lamp
The high exhaust system temperature (HEST) lamp alerts the operator of high exhaust temperature during the regen process when the speed is below 5 mph (8 km/h), or during a manual regen. The HEST lamp does not signify the need for any kind of vehicle or engine service; it only alerts the vehicle operator to high exhaust temperatures.

IMPORTANT: Make sure the engine exhaust pipe outlet is not directed at any person, or at any surface or material that will melt, burn, or explode.

Hydraulic Brake System Warning (Ametek only)
The brake system warning lamp illuminates if there is a hydraulic brake system failure, or if the vehicle is powered and the engine is not running.

Left-Turn Indicator
The left-turn indicator flashes on and off when the left-turn signal lights are flashing.
Both turn signal indicators flash when the hazard warning flasher is turned on.

Low Air Pressure Warning
The low air pressure warning indicator and emergency buzzer activate when the engine is turned on.
if air pressure in the primary or secondary air reservoir is below 65 to 75 psi (448 to 517 kPa), and remain on until air pressure rises above that level in both reservoirs.

Low Battery Voltage Warning

The low battery voltage warning indicator (battery icon) illuminates when the battery voltage drops below 12 volts.

Low Diesel Exhaust Fluid (DEF) Warning

The low diesel exhaust fluid (DEF) warning indicator illuminates when the DEF tank is approximately 10% full. Fill the DEF tank as soon as possible to avoid engine derate (decreased engine power).

Low Fuel Indicator

The low fuel indicator illuminates when the fuel level is approximately 1/8 full.

Low Oil Pressure Warning

The low oil pressure warning indicator and emergency buzzer activate whenever the engine oil pressure goes below the preset minimum specified by the engine manufacturer.

Low Windshield Washer Fluid Indicator

The low windshield washer fluid indicator illuminates when the washer fluid level is low.

Maintenance Warning (Ametek only)

When the maintenance warning lamp illuminates, the message display center will alert the driver as follows:

- Oil Change Required—alerts the driver that the engine has reached the recommended oil change interval.
- Air Filter Reminder—the air filter requires checking or replacement.
- Transmission Prognostics Warning—if the transmission has prognostics enabled.

Malfunction Indicator Lamp (MIL)

The malfunction indicator lamp (MIL) indicates an engine emissions-related fault. See the engine operation manual for details.

Marker Light Indicator (OptiView only)

The marker light indicator activates when the marker lights are on.

Parking Brake On Warning

The parking brake on indicator activates when the parking brake is engaged.

If the vehicle is moving at a speed of 2 mph (3 km/h) or more, the emergency buzzer will sound until the parking brake is released.

Pedestrian Collision Warning (OptiView only)

The pedestrian collision warning illuminates a green icon when a pedestrian is detected in the danger zone but the time to collision is not critical. A red flashing icon and series of beeps alert the driver when a pedestrian crosses in front of the vehicle's path and the time to collision is critical.

Right-Turn Indicator

The right-turn indicator flashes on and off when the right-turn signal lights are flashing.

Both turn indicators flash when the hazard warning flasher is turned on.

Service Transmission Indicator

NOTE: This indicator will not activate in the instrument panel on vehicles equipped with an Allison 3000 transmission. The indicator appears in the transmission push-button shifter display screen.

The service transmission indicator activates when the transmission requires service. For example, the transmission oil or filter may need to be changed. When the service transmission indicator illuminates, refer to the Allison Operator’s Manual or contact customer support at Allison Transmission to determine the specific cause activating the indicator.
Shift Inhibit Indicator
The shift inhibit indicator illuminates when the transmission ECU is prohibiting shifting.

Speed Limit Indicator (OptiView only)
If the system detects a speed limit sign, the speed limit indicator is shown continuously under the numeric speedometer reading. If speed limit data is not available, the speed limit indicator is not active.

Steerable Tag Axle Warning
The steerable tag axle indicator activates when there is a loss of air pressure at the axle. Air pressure is needed to lock and unlock the steerable tag axle.

Stop Engine Warning
The stop engine warning indicator illuminates if a malfunction that could cause engine damage occurs. In most cases, the engine protection warning will illuminate before the stop engine warning. When the stop engine warning indicator illuminates, immediately park the vehicle in a safe location and shut down the engine. Continued operation with the stop engine warning indicator illuminated will lead to automatic engine shutdown and possible engine damage.

Tire Pressure Monitoring System Indicator
The tire pressure monitoring system indicator illuminates when the system detects an issue with one or more tires such as under or over pressure or over temperature. A warning message also appears in the driver display screen.

Transmission Overheat Warning
The transmission overheat indicator illuminates when the temperature of the transmission fluid goes above the preset level set by the transmission manufacturer.

For more information, see the transmission manufacturer’s manual provided with the vehicle.

Transmission Warning
The transmission warning indicator will activate during vehicle operation (not during start-up) if the electronic control unit (ECU) has signaled a diagnostic code. Diagnostic codes indicate malfunctions in transmission operation. If this indicator stays on continuously during operation, have the transmission serviced as soon as possible.

Wait to Start Indicator
The wait-to-start indicator lamp illuminates when the intake heater is active. Wait until the indicator light goes off to start the engine.

Water In Fuel Indicator
The water in fuel indicator notifies the driver the fuel may contain water. Drain any water collected in the fuel/water separator.

Speedometer and Tachometer

Speedometer
NOTE: The following gauges apply to the OptiView™ instrument panel. Gauges for the Ametek panel look slightly different, but function the same.

The speedometer indicates vehicle speed in miles per hour (mph) or kilometers per hour (km/h). See Fig. 4.4.

![Fig. 4.4, Speedometer](image)

Tachometer
The tachometer indicates the revolutions per minute (rpm) of the engine. See Fig. 4.5.

NOTE: Some vehicles may be equipped (by the body builder) with a battery isolator system and a gel cell battery. On these vehicles, the voltmeter measures the average voltage of all the batteries when the engine is running. When the
engine is stopped, the voltmeter shows the voltage of the engine-starting batteries.

Gauges

Coolant Temperature Gauge

NOTICE

A sudden increase in coolant temperature may indicate engine or cooling system failure. Bring the vehicle to a safe stop and investigate the cause to prevent further damage. Do not operate the engine until the cause has been determined and corrected.

During normal engine operation, the coolant temperature gauge should read in the normal range between cold and hot. If the temperature remains below or exceeds the normal range, inspect the cooling system to determine the cause. See *Fig. 4.6*.

Engine Oil Pressure Gauge

The oil pressure gauge should read in the normal range, from 2 to 80 psi (14 to 552 kPa). See *Fig. 4.7*.

NOTICE

A sudden decrease or absence of engine oil pressure may indicate mechanical failure. Bring the vehicle to a safe stop and investigate the cause to prevent further damage. Do not operate the engine until the cause has been determined and corrected.

Fuel Level Gauge

The fuel gauge indicates the amount of fuel in the fuel tank. See *Fig. 4.8*.

Diesel Exhaust Fluid (DEF) Level Gauge

The DEF gauge indicates the amount of diesel exhaust fluid in the DEF tank. See *Fig. 4.9*.
Primary and Secondary Air Pressure Gauges

WARNING

If air pressure falls below minimum pressure, the braking ability of the vehicle will be limited. Slow the vehicle down and bring it to a gradual stop. Do not attempt to move the vehicle until air pressure has risen above the minimum level. Moving a vehicle without adequate braking power could cause an accident resulting in property damage, personal injury, or death.

Air pressure gauges register the pressure in the primary and secondary air systems. See Fig. 4.10. Normal pressure with the engine running is 100 to 120 psi (690 to 827 kPa) in both systems.

Air pressure gauges are required on all vehicles with air brakes. A low-air-pressure warning lamp and buzzer, connected to both the primary and secondary systems, activate when air pressure in either system drops below a minimum pressure of 65 to 75 psi (448 to 517 kPa).

Air Intake Restriction Gauge

The air intake restriction gauge indicates the vacuum on the engine side of the air cleaner. On standard installations, it is mounted on the air intake duct in the engine compartment. See Fig. 4.11 and Fig. 4.12. As an option for easier viewing, the intake-air restriction indicator can be mounted on the dash, usually on the right-hand control panel.
NOTE: Rain or snow can wet the filter and cause a temporarily higher than normal reading.

<table>
<thead>
<tr>
<th>Engine Make</th>
<th>EPA07 and EPA10 Engines</th>
<th>GHG14, GHG17, and GHG21 Engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cummins</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Detroit</td>
<td>22</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 4.1, Air Intake Maximum Restriction Values
Controls

Ignition Switch and Key .. 5.1
Electrical System Controls .. 5.4
Lighting Controls .. 5.5
Windshield Wiper Controls ... 5.6
Cruise Control .. 5.7
Horn Control ... 5.8
Powertrain Controls ... 5.8
Braking Controls ... 5.11
Steering Controls ... 5.13
Ignition Switch and Key
Standard Ignition and Key
The ignition switch can be turned to four positions: ACCESSORY, OFF, ON, and START. See Fig. 5.1.

![Fig. 5.1, Ignition Switch and Positions](image)

The key can be inserted and removed only from the OFF position (key slot is vertical). The low-beam headlights, brake lights, fog lights, dome lights, clearance lights, turn signals, hazard warning lights, and parking lights operate with the ignition switch in the OFF position, whether or not the key is inserted.

In the accessory (ACC) position (key is turned counterclockwise), all electric gauges operate.

Turn the key fully clockwise to the START position only when starting the engine. When the engine starts, release the key. When released, the key will move to the ON position.

In the ON position (key turned 45 degrees clockwise), all electrical systems are operable. The warning lights and buzzer for the low air pressure and low oil pressure warnings operate until the engine is started and minimum pressures build up.

Push-Button Ignition and Smart Key Fob
IMPORTANT: If equipped with the 'Welcome Feature,' leaving the smart key fob close to the push-button ignition can lead to battery depletion of the smart key fob. Do not leave the smart key fob near the ignition for long periods of time.

Depending on the body builder and dealer, the push-button ignition may be programmed with a 'Welcome Feature'. This allows the push-button ignition to illuminate—even in the OFF position—when the smart key fob is within approximately 4 to 5 ft (1 to 2 m).

The push-button ignition switch has four positions. See Fig. 5.2.

![Fig. 5.2, Push-Button Ignition](image)

Starting the Engine
To start the engine, depress the brake pedal and press the START/STOP ENGINE button with the transmission shifter in neutral (N). If the wait to start lamp is active, a second button press is required to start the engine.

If the START/STOP ENGINE button is pressed without depressing the brake pedal, the engine will not start and the button will change as follows: OFF → ACC → ON → OFF

Alternate Starting Method
The primary starting sequence will not operate as previously described when any of the following conditions are true:

- The smart key fob battery is dead.
• The smart key fob is not working correctly.
• The primary brake air tank is empty.

During these conditions, an alternate starting method is required. Use the lock button end of the smart key fob to contact the START/STOP ENGINE button directly. See Fig. 5.3.

One press of the START/STOP ENGINE button with the smart key fob will change as follows: OFF → ACC → ON → OFF

IMPORTANT: In the alternate starting method, the engine will start without depressing the brake pedal, however for safety, always depress the brake pedal before starting the engine.

The engine will start when the smart key fob is pressed and held directly on the START/STOP ENGINE button for longer than 1 second.

Accessory (ACC)

NOTE: If the START/STOP ENGINE button is in the ACC position for an extended period of time, the battery may discharge because the engine is not running.

To activate the accessory position, press the START/STOP ENGINE button while the ignition is in the OFF position without depressing the brake pedal.

The headlights (low beams), brake lights, fog lights, dome lights, clearance lights, turn signals, hazard warning lights, and parking lights operate in the ACC position.

ON

NOTE: If the START/STOP ENGINE button is in the ON position for an extended period of time, the battery will discharge because the engine is not running.

To activate the ON position do one of the following:

• Press and hold the START/STOP ENGINE button for more than 1 second while the ignition is in the OFF position without depressing the brake pedal.

• Press the START/STOP ENGINE button while the ignition is in the ACC position without depressing the brake pedal.

The ON indicator remains illuminated until the ignition switch moves to the next position. All electrical systems are operable in the ON position. The warning lights and the buzzer for low air pressure and low oil pressure operate until minimum pressures are built up.

OFF

IMPORTANT: Leaving the smart key fob close to the push-button ignition can lead to battery depletion of the smart key fob. Do not leave the smart key fob near the ignition for long periods of time.

To turn off the engine or the vehicle power, press the START/STOP ENGINE button when the vehicle is not in motion. The OFF indicator illuminates for 5 seconds, then deactivates.

All of the components (headlights [low beams], brake lights, fog lights, etc.) that are operable in the ACC position are operable in the OFF position.

IMPORTANT: In an emergency situation while the vehicle is in motion (the engine is running and vehicle speed is more than 3 mph [5 km/h]), the driver can turn the ignition OFF by holding the START/STOP ENGINE button for more than 3 seconds.

Smart Key Fob Control Buttons

NOTE: The smart key fob buttons are operational only when the system is in ACC or OFF modes.

The following is a description of the smart key fob control buttons. For an example of the control buttons, refer to Fig. 5.4.
• One press of the front entry door lock button commands the system to lock the front entry door.
• One press of the front entry door unlock button commands the system to unlock the front entry door.
• One press of the cargo doors lock button commands the system to lock the cargo doors.
• One press of the cargo doors unlock button commands the system to unlock the cargo doors.

Smart Key Fob Range

The operational range of the smart key fob is affected by the location of the key fob and any metal structure that may prohibit the signal. The smart key fob operates up to the distances shown below, when measured from the center of a given location outward without any object between the smart key fob and the vehicle.

• in front of the vehicle—125 ft (38 m)
• either side of the vehicle—75 ft (23 m)
• behind the vehicle—10 ft (3 m)

Smart Key Fob Interference

NOTICE

The smart key fob is not completely waterproof. Avoid submerging the smart key fob in water, otherwise damage could occur.

Operational interference of the smart key fob can occur when used near radio transmitting devices such as a radio station, airport, mobile two-way radio system, cell phone or smart phone, or when another vehicle's smart key fob is being operated. Extreme temperatures, either low or high, can also cause operational interference.

If the smart key fob is in close proximity to a cell phone or smart phone, such as a pants or jacket pocket, the signal from the smart key fob could be blocked. This is especially important when the phone is active—making or receiving calls, text messaging, and sending or receiving email. Keep the two devices in separate locations to avoid any interference.

Programming a New Smart Key Fob

NOTE: A maximum of two smart key fobs can be programmed for a vehicle. In the event that all registered smart key fobs are not available or are damaged, the dealership must perform a service routine to program a new smart key fob.

In order to program a new smart key fob for the vehicle, the ignition must be in the ON position, vehicle speed must be under 3 mph (5 km/h), and at least one registered smart key fob (for that vehicle) must be available. Follow the steps below to program the new smart key fob.

1. Activate the vehicle ignition system. See the "ON" section under the "Push-Button Ignition and Smart Key Fob" heading.
2. Using the instrument cluster, navigate to the 'Vehicle Configuration' menu. Enable fob programming in this menu. For navigation instructions, see Chapter 2 or Chapter 3 as applicable to the instrument cluster installed in the vehicle.

NOTE: Do not depress the service brake pedal when performing the next two steps.

3. Press and hold the front entry door lock button (approximately three seconds) of the registered
smart key fob until the instrument cluster displays 'Programming Mode Active'.

4. Press and hold the front entry door lock button (approximately three seconds) of the unregistered (new) smart key fob until the instrument cluster chimes once. The new smart key fob is now registered to the vehicle.

5. Press the service brake pedal or the START/STOP ENGINE button once to exit programming mode.

Push-Button Ignition and Smart Key Warning Messages

Warning messages related to the push-button ignition and smart key fob will appear in the display screen of the instrument cluster. The following is a description of the various messages that could appear.

Check Fob

When the ignition is active and the smart key fob is not within range of the start authorization antenna, the instrument cluster will display 'Check Fob'. This alerts the driver that the smart key is not recognized by the system or is not within a 4 to 5 ft (1 to 2 m) range of the antenna.

NOTE: This message only appears when the vehicle is traveling at 20 mph (32 km/h) or less.

Press Brake to Start

When the ignition is active, the smart key fob is within range of the start authorization antenna, the engine is not running, the service brake pedal is depressed, and the START/STOP ENGINE button is pressed for more than 1 second, 'Press Brake to Start' will display in the instrument cluster. This alerts the driver of the action required to start the vehicle.

The driver must release the START/STOP ENGINE button and depress the service brake pedal before pressing the START/STOP ENGINE button again to start the vehicle.

Check Battery

When the ignition is active and the smart key fob battery is between 1 to 2.15V, the instrument cluster will display 'Check Battery.' This alerts the driver that the smart key fob battery needs to be replaced.

NOTICE

When replacing the battery, be aware that static electricity can damage the inner circuit of the smart key fob.

Operational interference of the smart key fob can occur from the use of incorrect batteries. When replacing the battery, use only battery type CR2032. Once the battery is replaced, check the smart key fob for proper operation.

Press Button With Fob

When the ignition is active, the smart key fob is within range of the start authorization antenna, the engine is not running, the service brake pedal is depressed, and the START/STOP ENGINE button is pressed for more than 1 second, 'Press Button w/Fob' will display in the instrument cluster. This alerts the driver of the action required to start the vehicle. See 'Alternate Starting Method' for instructions.

Programming Mode Active

When the ignition is active and the keyless module is in programming mode, the instrument cluster will display 'Programming Mode Active'. This alerts the driver that the system is ready to program a new smart key fob. See 'Programming a New Smart Key Fob' for instructions.

Electrical System Controls

The Shuttle Bus chassis uses multiple electrical signals that are carried along a simplified set of wires, reducing the size of wiring bundles. There are significantly fewer wires overall, meaning less chance of damage, shorts, and other problems. The information in this chapter is to help familiarize the driver with the basic electrical system. Servicing the electrical system should be done only by qualified technicians. Special skills and equipment are required. Take your vehicle to an authorized Freightliner service facility for repairs.

WARNING

Do not attempt to modify, add, splice, or remove electrical wiring on this vehicle without authorization from Freightliner Engineering. Doing so could damage the electrical system and result in a fire that could cause serious personal injury or property damage.
Battery Disconnect Switch

IMPORTANT: When the batteries are disconnected, the cable to the starter is still hot, as it is not connected through the disconnect switch.

Some chassis may be equipped with a battery disconnect switch that can be used to prevent unwanted drain from the vehicle battery when the vehicle is not in use or is in storage. It can also rapidly disconnect from power supplies in the event of an emergency. Mounting locations may vary. See Fig. 5.5.

Lighting Controls

Automatic Ambient Headlight Sensor

IMPORTANT: This optional feature only activates or deactivates the panel lights, headlights and taillights; there is no high-beam headlight sensing function.

The ambient sensor activates the panel lights, headlights and taillights when the brightness of the ambient light drops below a preset value for three seconds. Once activated, these lights remain on and require either a headlight switch cycle (Off/On/Off), or turning the ignition to the OFF position to deactivate them.

Headlights

The headlight switch is a rotary switch located to the left of the steering column. See Fig. 5.6.

The headlights automatically turn on if the windshield wipers are on. The headlights can be deactivated by:

- switching the windshield wipers off;
- cycle the headlight switch (Off/On/Off);
- turn the ignition to the OFF position.

High-Beam Headlights

NOTE: The ignition switch must be on for the high beams to work.

With the low-beam headlights on, push the turn-signal lever away from you to turn on the high-beam headlights. See Fig. 5.7. To turn off the high-beam headlights, pull the lever to the middle position.

With the low-beam headlights on, pull the lever towards you to flash the high-beam headlights momentarily.

When the high-beam headlights are on, a blue tell-tale illuminates on the instrument cluster.

Fog Lights

NOTE: Some vehicles may be equipped with a rocker switch to activate the fog lights. If so...
equipped, the rocker switch is installed by the body builder and the location will vary.

To activate the fog lights, do one of the following based on the vehicle controls:

- Pull the rotary switch out when the marker lights or headlights are on. See Fig. 5.6.
- Push the rocker switch (not shown).

Marker Lights

To turn the marker lights on, turn the headlight switch clockwise past the off position. See Fig. 5.6.

Marker Interrupt

The marker interrupt switch, located in the right-hand switch pod of the steering wheel, temporarily flashes the marker lights. See Fig. 5.8.

Turn Signals

The turn signal lever is mounted on the left-hand side of the steering column. Moving the turn signal lever down activates the left turn signal lights; moving it up activates the right turn signal lights. The lever is a self-canceling combination turn signal, windshield wiper/washer switch, and high-beam headlight control unit. See Fig. 5.7.

When a turn signal is activated, a green indicator arrow flashes at the far left or far right of the instrument panel.

The lever automatically returns to the neutral position (self-cancels the switch) when the steering wheel returns to the straight-ahead position after a turn. To cancel the signal manually, move the lever to the neutral position.

Hazard Warning Lights

To activate the hazard warning lights, push the hazard warning light switch on the right side of the steering column. See Fig. 5.9. When the hazard warning lights are activated, all of the turn signal lights and both of the turn signal indicator lights on the instrument panel will flash.

To cancel the warning lights, push the switch in on the right side of the steering column.

Windshield Wiper Controls

Do not attempt to manually move the windshield wiper arms. Wiper motor damage will occur if the arms are forcibly moved.

The windshield wipers and washer controls are on the multi-function turn signal lever on the left-hand side of the steering column. See Fig. 5.7.

The wipers are operated by a rotary switch on the turn signal lever. There are five settings, marked on the dial by symbols for off, two intermittent settings, and two continuous speeds.

Turn the wipers on by rotating the rotary switch up. Rotate the switch further to increase the speed of the wipers through the two intermittent settings, then to low and high speeds. Rotate the switch down to slow the wipers down. Rotate the switch as far down as it will go to turn the wipers off.

The windshield washer button is located at the end of the turn signal lever. Momentarily press the windshield washer button to initiate a single wipe without activating the washer pump. The wipers will swipe one full cycle and return to the inactive position.

To operate the windshield washers, press and hold the button in. After a short delay, the washer will pump windshield washer fluid onto the windshield for as long as the washer button is pressed. The windshield wipers will turn on at low speed while the
After the button is released, the wipers will continue to operate for one to several wipe cycles, depending on how long the wash button was pressed initially.

Cruise Accelerate/Resume
2. Marker Interrupt
3. Cruise Decelerate/Set
4. Phone Hang-Up/Reject
5. Mute Button
6. Phone Pick-Up

Cruise On/Off Button—Press to turn cruise control on or off. When cruise control is on, the ICU message center displays relevant cruise information. See Fig. 5.8.

Cruise Control

WARNING

Do not use the cruise control system when driving conditions do not permit maintaining a constant speed, such as in heavy traffic or on roads that are winding, icy, snow-covered, slippery, or roads with a loose driving surface. Failure to follow this precaution could cause a collision or loss of vehicle control, possibly resulting in personal injury or property damage.

NOTE: Maximum cruise control speed varies according to vehicle specifications, but cannot exceed 75 mph (121 km/h).

Cruise control allows the driver to automatically control the speed of the vehicle above 32 mph (51 km/h). The buttons that operate the cruise control system are located on the right-hand switch pod of the steering wheel. See Fig. 5.8.

- Cruise On/Off Button—Press to turn cruise control on or off. When cruise control is on, the ICU message center displays relevant cruise information.
control icons and the set speed. The speed memory will be retained until the cruise control is disabled with the on/off button, or the ignition is turned off.

- **Cruise Accelerate/RES Button**—Press and hold to increase the set cruise speed. Press to resume the set speed.

- **CNCL Button**—Press to pause the cruise control, while retaining the speed setting in memory. The cruise control can also be disengaged, while retaining the speed memory, by depressing the brake pedal.

- **Cruise Decelerate/SET Button**—Press to set the cruise speed while the vehicle is traveling at the desired speed. Press and hold to decrease the set cruise speed.

1. To cruise at a particular speed:
 1.1 Press the on/off button to turn cruise control on.
 1.2 Depress the accelerator pedal until the speedometer reaches the desired speed.

 NOTE: Cruise control is cancelled if the brake pedal is depressed, or vehicle speed drops below the minimum cruise control speed.

 1.3 Press the cruise decelerate/SET button to set the desired speed.

 NOTE: The speed memory is lost whenever the ignition switch is turned to OFF, or cruise control is turned off.

2. To disengage the cruise control, do one of the following:
 - Press the CNCL button in the center of the right-hand control pod.
 - Depress the brake pedal.

3. To resume a preselected cruise speed:
 3.1 Ensure cruise control is on.
 3.2 Press the cruise accelerate/RES button. Cruise will return to the last set speed.

 NOTE: If vehicle speed drops below the minimum cruise control speed, cruise control will disengage. To resume to the preselected cruise speed, increase vehicle speed to above minimum cruise control speed and press the cruise accelerate/RES button.

4. To increase cruise speed, press the cruise accelerate/RES button until the vehicle accelerates to the desired speed.

5. To decrease cruise speed, press the cruise decelerate/SET button until the vehicle decelerates to the desired speed.

Horn Control

The button for the horn is located in the center of the steering wheel. To sound the horn, press the center of the steering wheel pad.

Powertrain Controls

Allison Automatic Transmissions

Allison automatic transmissions are controlled by one of the following shift controls depending on what is installed in the vehicle. See Fig. 5.10, Fig. 5.11, Fig. 5.12 and Fig. 5.13. For vehicles equipped with the automatic transmission multifunction control, shown in Fig. 5.13, the control moves in two directions and has two switches. It is used to request manual shifts, change shift mode, set engine brake levels, and control specialty engine brake functions. See Chapter 7 for complete transmission operating instructions.

![Fig. 5.10, GEN IV Shift Selector](image-url)
Manual Dump Valve

On vehicles equipped with an optional manual dump valve, there are two ways to deflate the rear suspension. With the key in the OFF position, toggle the dump valve into the "lower" position. If the key is in the ON position, the parking brake must be set (ON) before the dump valve is toggled into the "lower" position.

NOTE: If the key is turned to the ON position and the parking brake is not engaged, the over-ride system will cause reinflation of the air ride system.

Tag-Axle Suspension Dump Switch

The optional tag-axle suspension is a non-liftable, full-time suspension designed to increase the Gross Vehicle Weight Rating (GVWR). It is used when the rear suspension/axle will be loaded to a weight greater than 20,000 lb (9072 kg). Under certain conditions, air can be exhausted from the air springs to improve maneuverability or traction on the drive axle via the tag-axle suspension dump switch.

The tag-axle suspension dump switch is operated by a three-position, dash-mounted rocker switch. See Fig. 5.14. The three positions of the switch operate as follows:

- TAG DUMP AUTO (top position)—The tag axle air bags dump when the vehicle is in reverse.
- DISABLE (middle position)—The tag axle air bags will not dump.
- MANUAL (bottom position)—Pressing the MANUAL switch dumps the tag axle air bags if the transmission is in drive and vehicle speed is 8 mph (13 km/h) or less. Pressing the MANUAL switch a second time changes the air bag mode from dump to fill.

WARNING

If the vehicle is equipped with an air suspension system, do not move the vehicle with the air suspension deflated. Doing so could result in a loss of vehicle control, possibly causing personal injury and property damage.
NOTE: Chassis built with an air suspension dump option have an automatic feature that will not allow the suspension to be deflated unless the parking brakes are set. The suspension will automatically inflate when the parking brakes are released.

In the TAG DUMP AUTO mode, the axle air bags will deflate when all of the following conditions are met. If any of these conditions are not met, the tag-axle air bags will fill:

- The tag-axle suspension dump switch is momentarily pressed to toggle the tag-axle control module into the dump mode.
- The vehicle speed is less than 8 mph (13 km/h).
- The vehicle is in neutral or a forward gear.

If the vehicle exceeds a speed of 8 mph (13 km/h) while the switch is in the TAG DUMP AUTO position, the tag axle suspension dump switch control system will override the TAG DUMP AUTO mode and the tag suspension air bags will refill.

IMPORTANT: The tag-axle suspension dump switch feature must be cycled on and off of the TAG DUMP AUTO position if an override event occurs while the switch is in the TAG DUMP AUTO position.

In the MANUAL mode, the axle air bags will deflate when all of the following conditions are met. If any of these conditions are not met, the tag-axle air bags will fill:

- The tag-axle suspension dump switch remains in the MANUAL mode (reverse maintained position).
- The vehicle speed is less than 8 mph (13 km/h).
The MANUAL mode portion of the switch is pressed a second time to exit MANUAL mode.

Backup Alarm
An optional backup alarm, supplied with the chassis and installed by the body builder, sounds when reverse (R) gear is engaged. Check the operation of the backup alarm daily (if so equipped).

Engine Protection Shutdown Override Switch
The Engine Protection Shutdown Override Switch resets the engine shutdown timer at 30 seconds. The stop engine lamp flashes 30 seconds before shutting the engine down. The operator can use the override switch as many times as desired or until engine failure. See Fig. 5.15.

NOTICE
Using the override button so the engine operates for an extended period may result in engine damage. The operator has the responsibility to take action to avoid engine damage.

Low Idle Adjustment Switch
If so equipped, the engine low idle speed can be adjusted in 25 rpm increments with a low idle adjustment switch. On these vehicles, the engine control unit is programmed to allow low idle speeds between 700 and 875 rpm.

Engine Brake Switch
NOTE: See Chapter 9 for detailed information about engine brake operation.

Whenever vehicle braking is required on good road conditions, the engine brake may be used in conjunction with the service brakes. There is no time limit for operation of the engine brake. However, an engine brake does not provide the precise control of, and is not a substitute for, service brakes.

The engine brake control is located on the right-hand steering-column-mounted lever. At the top position, the engine brake is off, and at the three lower positions, the brake is on and the intensity (low, medium, high) increases with each step down. See Fig. 5.16

IMPORTANT: On some vehicles, the engine brake only has off and high intensity options.

NOTE: The cruise control system and safety systems may activate the engine brake regardless of the lever position.

F611005 03/20/2008

Braking Controls
Parking Brake Control Knob
All pneumatic-braked vehicles are equipped with a diamond-shaped parking brake control knob. See Fig. 5.17. Pull the knob to apply the parking brake. In air brake systems, before the parking brake can be released, the air pressure in either brake system must be at least 65 psi (448 kPa). See Chapter 9 for detailed operating instructions.
WARNING

If the vehicle is equipped with an air suspension system, do not move the vehicle with the air suspension deflated. Doing so could result in a loss of vehicle control, possibly causing personal injury and property damage.

NOTE: Chassis built with an air suspension dump option have an automatic feature that will not allow the suspension to be deflated unless the parking brakes are set. The suspension will automatically inflate when the parking brakes are released.

Hand-Operated Parking Brake

If so equipped, a parking brake control lever is located to the left of the steering column. To apply the parking brake, depress the brake pedal, then pull up on the parking brake lever. To release the parking brake, depress the brake pedal and push the parking brake lever all the way down.

NOTE

Take care to hold on to the parking brake lever while releasing it. Do NOT allow the lever to slam down while releasing it, otherwise component damage may occur.

If the parking brake does not hold the vehicle securely, depress the brake pedal and release the parking brake. Turn the knob on the end of the lever clockwise to increase the parking brake application.

If the parking brake still doesn’t hold the vehicle securely (after adjustment), check the brake lining thickness. For instructions, see Group 42 of the Shuttle Bus Chassis Maintenance Manual.

Hydraulic Parking Brake (optional)

To apply the hydraulic parking brake, pull the yellow knob labeled PARKING BRAKE on the dash panel. In order to release the hydraulic parking brake, the engine must be running (hydraulic pressure is needed to release the brake) and the gear selector must be in the Neutral (N) position. To release the parking brake, push the knob in.

NOTE: If the gear selector is not in the Neutral (N) position and the parking brake is on, a buzzer will sound to let the driver know to place the gear selector in the Neutral (N) position.

If the ignition key is in the OFF position and the parking brake is not applied, a buzzer will sound to let you know that you should apply the parking brake.

With the engine shut down, the hydraulic pump will actuate with your foot on the brake pedal; this could cause the battery to run down. If the engine is inoperable, see the "Emergency Release of Parking Brake" procedure that follows.

Emergency Release of Parking Brake

If the engine will not start and you want to release the parking brake, do the following:

• block the wheels
• turn the ignition switch to the ON position

NOTICE

Do not crank the engine for more than 30 seconds at a time during any of the following procedures. Wait two minutes after each try to allow the starter to cool. Failure to do so could cause starter damage.

Use the ignition switch to turn the engine over several times with the gear shift selector in the Neutral (N) position and the parking brake knob in the released (pushed) position.

NOTE: The emergency release will not work in all cases. The system requires hydraulic fluid to provide pressure for the procedure to work. Since the system is pressurized when the brake is released, the parking brake will come back on in 10 minutes, or longer depending on internal pressure.
Steering Controls

Standard Tilt/Telescope Steering Column

WARNING

Never try to tilt or telescope the steering column while driving the vehicle. Doing so could cause loss of vehicle control and result in personal injury, or death, or property damage.

To tilt the steering column or telescope the steering wheel, press down on the foot pedal (located below the steering wheel) to release the steering column lock. Adjust the column and steering wheel to the desired position. Release the foot pedal to lock the steering column and steering wheel in place. See Fig. 5.18.

NOTE: For safety, the steering column is locked at all times unless the foot pedal is depressed.

Power Tilt/Telescope Steering Column and Adjustable Pedals

WARNING

Never try to tilt or telescope the steering column while driving the vehicle. Doing so could cause loss of vehicle control and result in personal injury, or death, or property damage.

Power tilt/telescope steering columns have a toggle switch on the left side of the steering column.

To tilt the steering column and telescope the steering wheel, rotate the toggle switch on the left-side of the steering column to the 'column' position. See Fig. 5.18. Push the toggle switch up or down to adjust the column to the desired height. Push the switch back toward the dash and the steering wheel goes in; pull the switch toward the driver and the steering wheel comes out. Once the column and steering wheel are at the desired position, rotate the toggle switch to the middle (off) position.

NOTE: Both the brake and throttle pedal position are adjusted at the same time.

Some steering columns are equipped with the toggle switch but it only adjusts the brake and throttle pedals. Use the foot pedal on these vehicles to tilt and telescope the steering wheel.
Some steering columns are equipped with the toggle switch but it only adjusts the brake and throttle pedals. Use the foot pedal on these vehicles to tilt and telescope the steering wheel.

A. Telescope
1. Steering Column and Pedal Toggle Switch
2. Hazard Warning Light Switch
B. Tilt
3. Foot Pedal (standard column only)

Fig. 5.18, Tilt/Telescope Steering Column
Engines

6.1 Engine Starting ... 6.1
6.2 Engine Operation ... 6.2
6.3 High Idle Options ... 6.3
6.4 Exhaust Aftertreatment System (ATS) 6.3
6.10 Engine Shutdown ... 6.10
Engine Starting
General Information
This engine chapter is to serve as a guide for best practices only. Each make and model engine may have operating characteristics that are unique to that particular engine, and will be documented in the engine manufacturer’s literature. Always refer to specific instructions and recommendations from the engine manufacturer.

NOTE: Before starting the engine, read the applicable instrument panel information (Chapter 2 or Chapter 3). Read Chapter 4, Instruments, and Chapter 5, Controls. Also read the operating instructions in the manufacturer’s engine operation manual before starting the engine.

Normal Starting

WARNING
Do not use any starting aid, such as ether, in engines with an air intake heater. This could cause an explosion and serious personal injury or death.

NOTE: Cummins and Detroit engines are run on a dynamometer before being shipped from the factory. They do not require a break-in period.

IMPORTANT: Special break-in oils are not recommended for new or rebuilt Cummins or Detroit engines.

NOTICE
If a vehicle does not start on the first attempt, make sure that the engine has completely stopped rotating before reapplying the starter switch. Failure to do so can cause the pinion to release and re-engage, which could cause ring gear and starter pinion damage.

Moving a vehicle with the starter and/or using the starter to bump the engine for maintenance procedures is strictly prohibited. Use of these methods to bump the engine over or move the vehicle can cause the pinion to release and re-engage, which could cause ring gear and starter pinion damage.

IMPORTANT: Ring gear and starter pinion damage caused by improper starting procedures is not warrantable.

---------- NOTICE ----------
Do not crank the engine for more than 30 seconds at a time. Wait two minutes after each try to allow the starter to cool. Failure to do so could cause starter damage.

---------- NOTICE ----------
If the engine is equipped with a turbocharger, protect the turbocharger during start-up by not depressing the accelerator pedal until normal engine idle oil pressure registers on the gauge.

1. Before engine start-up, complete the pre- and post-trip inspections and maintenance procedures in Chapter 11.
2. Set the parking brake.
3. Place the transmission in neutral.
4. Turn the key to the ON position and allow the gauge sweep to complete. The audible alert will sound for approximately four seconds.

During cold conditions, the WAIT TO START lamp may illuminate. Wait until the lamp goes out before turning the key to START.

5. After the gauge sweep has completed, turn the key to the START position.

---------- NOTICE ----------
Do not rev the engine if the oil pressure gauge indicates no oil pressure. Shut down the engine if oil pressure does not build within approximately ten seconds. Check to determine the cause of the problem. Operating the engine with no oil pressure will damage the engine.

6. Apply load gradually during the warm-up period.

---------- NOTICE ----------
If the oil pressure gauge indicates no oil pressure, shut down the engine within approximately ten seconds to avoid engine damage.

7. Check the oil pressure gauge for any drop in lubricating oil pressure or mechanical malfunction
in the lubricating oil system. Minimum oil pressure at idle is 7 psi (50 kPa).

Cold-Weather Starting

See the engine manufacturer’s operation manual for starting aids that are approved for specific engines.

If the unit is equipped with a block heater, start the block heater two to four hours before travel.

Engine Operation

A Top Tier™ compliant fuel is recommended. Look for the symbol that denotes a Top Tier compliant fuel; see Fig. 6.1.

![Top Tier Diesel Fuel Symbol](image)

Normal Operation

WARNING

Do not operate the engine in an area where flammable vapors such as gasoline or diesel fumes are present. Shut off the engine when in an area where flammable liquids or gases are being handled. Failure to observe these precautions could result in serious injury or death.

Engines produce high horsepower and peak torque characteristics at low rpm. Because of this, it is not necessary to operate the engine at high rpm to deliver the required horsepower at the wheels. These characteristics may also result in less shifting and make shifting at lower rpm (to peak torque) more practical.

Depending on the vehicle gearing, the posted speed limit can sometimes allow operation in either of the top two gears. However, for improved operating efficiency (fuel economy and engine life), operate in the top gear at reduced rpm, rather than in the next lower gear at the maximum rpm. Cruise at partial throttle whenever road conditions and speed requirements permit. This driving technique permits operating within the most economical power range of the engine.

When approaching a hill, accelerate smoothly to start the upgrade at full power (2000 rpm or higher is recommended), then shift down as desired to maintain the optimum vehicle speed.

Engines are designed to operate over a wide speed range. More frequent shifting than necessary does not allow proper utilization of this flexibility. The driver who stays in top gear and uses the wider speed range will achieve the best fuel economy.

NOTICE

Do not allow the engine to exceed its governed speed, or serious engine damage could result.

The engine is effective as a brake on downhill grades, but take care not to overspeed the engine going downhill. Use a combination of brakes and gears to keep the vehicle under control at all times and to keep the engine speed below the rated governed rpm.

Cold-Weather Operation

Satisfactory performance of a diesel engine operating in low ambient temperatures requires modification of the engine, surrounding equipment, operating practices, and maintenance procedures. The lower the temperature, the greater the amount of modification required. See the engine manufacturer’s operation manual for service products approved for use in cold weather engine operation.

If satisfactory engine temperature is not maintained, maintenance costs will increase due to greater engine wear. If the engine coolant gets too cold, raw fuel will wash the lubricating oil off the cylinder walls and dilute the crankcase oil, causing all moving parts of the engine to suffer from poor lubrication.

If the engine is in good mechanical condition and the precautions necessary for cold-weather operation are taken, ordinary cold weather will not cause difficulty in starting or loss of efficiency.

The following points are important to observe when operating in cold weather.

- Check for cracks in the battery cases, for corrosion of the terminals, and for tightness of the cable clamps at the terminals.
- Charge the batteries to full capacity. Replace damaged batteries.
- If equipped, turn off the battery disconnect switch after the engine is shut down to prevent battery discharge.
• Have the alternator output checked at an authorized Freightliner dealer.
• Check the condition and tension of the drive belts.
• Refer to the engine manufacturer’s operation manual for recommended heaters, low-viscosity lubricating oils, winter-grade fuels, and approved coolants.
• Periodically check the coolant mix ratio (concentration of antifreeze in the coolant). Add more if necessary.
• At temperatures below -4°F (-20°C), a coolant preheater is recommended.

High Idle Options

NOTE: To operate the high idle options listed below, the vehicle must be stopped, the transmission shift lever placed in the Neutral (N) or Park (P) position, and the parking brake set.

IMPORTANT: Do not idle the engine for excessively long periods. The extreme heat may cause the bearings to seize or the oil seals to leak.

High Idle with Cruise Control
1. Place the shift lever in Neutral (N) or Park (P) and set the parking brake.
2. Press the cruise switch to the ON position. Press the RESUME switch to accelerate the engine revolutions per minute (rpm) to the minimum set speed. To increase the engine rpm, press and hold the RESUME switch. To decrease the engine rpm, press and hold the SET switch.

NOTE: The rpm can also be increased by depressing the throttle pedal until the desired rpm is met, and then pressing the SET switch.
3. Disengage the cruise control by depressing the service brake pedal, or by moving the ON/OFF switch to the OFF position.

Voltage-Based Auto High Idle
1. Place the shift lever in Neutral (N) or Park (P) and set the parking brake.
2. The idle rpm will automatically increase when the voltage drops below 12.2 volts. The rpm will incrementally increase every five seconds until 13.4 volts is achieved and maintained.
3. The Voltage-Based Auto High Idle system is disengaged by depressing the service brake pedal.

IMPORTANT: The Voltage-Based Auto High Idle system will not return to normal operation until one of the following occurs: The parking brake is depressed and released, the ignition key is turned to the OFF position, or the transmission gears are changed.

Exhaust Aftertreatment System (ATS)

Model year 2007 and later vehicles and/or engines domiciled in the U.S. or Canada are designed to meet Emission and Fuel Efficiency Standards of the U.S. Federal Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), Emission Regulations under the Canada Motor Vehicle Safety Act in Canada, and the California Air Resources Board (CARB) effective as per the applicable emission model year. To determine an engine’s or vehicle’s emission model year, refer to the respective EPA/CARB certification label.

IMPORTANT: Depending on local jurisdictional guidelines, vehicles that are domiciled outside of the U.S. and Canada may not have emissions aftertreatment systems (ATS) that are compliant with EPA regulations.

NOTICE

Follow these guidelines for engines that comply with EPA07 or newer regulations, or damage may occur to the aftertreatment device (ATD) and the warranty may be compromised.

• Use ultralow-sulfur diesel with 15 ppm sulfur content or less.
• Do not use fuel blended with used engine lube oil or kerosene.
• Engine lube oil must have a sulfated ash level less than 1.0 wt %; currently referred to as CK-4 oil.
FA-4 engine lube oil is available, but is not compatible with all engines. See the engine manufacturer’s operation manual to determine if FA-4 oil can be used in your vehicle’s engine. Failure to do so could lead to engine damage and is not warrantable.

IMPORTANT: Using non-specification fuels or oils can lead to shortened diesel particulate filter (DPF) cleaning or replacement intervals. For example, using CK-4+ oil with 1.3% sulfated ash (30% more ash content) may result in the need for DPF cleaning or replacement 20 to 30% sooner than would normally be required.

IMPORTANT: See the engine manufacturer’s operation manual for complete details and operation of the ATS.

EPA07 Engines

The EPA07 ATS varies according to engine manufacturer and vehicle configuration, but the exhaust muffler is replaced by an aftertreatment device (ATD). Inside the ATD, the exhaust first passes over the diesel oxidation catalyst (DOC), then passes through the diesel particulate filter (DPF), which traps soot particles. The soot is burned to ash during a process called regeneration (regen).

EPA10 and Newer Engines

To meet EPA guidelines, engines that are compliant with EPA10 and newer regulations use an ATS that has, in addition to a DOC/DPF device like that used in an EPA07 ATD, a Selective Catalytic Reduction (SCR) device to reduce NOx downstream of the engine.

After exhaust gases leave the engine, they flow into the ATS. First they flow into a two-part ATD, comprised of a diesel oxidation catalyst (DOC), and a diesel particulate filter (DPF). The DPF traps soot particles, then exhaust heat converts the soot to ash in the DPF, in a process called regeneration (regen). The harder an engine works, the better it disposes of soot. Passive regen occurs when the engine is running under load and regen occurs without input. If the engine isn’t running hot enough, the electronic controls may initiate an active regen, whereby extra fuel is injected into the exhaust stream before the diesel particulate filter, to superheat the soot trapped in the filter and reduce it to ash. Both types of regen occur without driver input.

Active regeneration can occur automatically anytime the vehicle is moving. The exhaust gas temperature could reach 1500°F (816°C), which is hot enough to cause a fire, heat damage to objects or materials, or personal injury to persons near the exhaust outlet.

The exhaust temperature can remain high even after the vehicle has stopped. When stopping the vehicle shortly after an automatic regen, ensure the exhaust outlets are directed away from structures, trees, vegetation, flammable materials, and anything else that may be damaged or injured by exposure to high heat.

Operating at reduced engine load will allow soot to accumulate in the DPF. When this occurs, the DPF lamp illuminates, indicating that a regen must be performed, and the driver must either bring the vehicle up to highway speed to increase the load, or park the vehicle and initiate a parked regen. See Parked Regen, later in this chapter for instructions.

After the exhaust stream passes through the ATD, it flows through another canister housing the SCR device. A controlled quantity of diesel exhaust fluid (DEF) is injected into the exhaust stream, where heat converts it to ammonia (NH₃) gas. This mixture flows through the SCR device, where the ammonia gas reacts with the NOx in the exhaust, to produce harmless nitrogen (N₂) and water vapor (H₂O), which then exits out of the tailpipe.

ATS Warning Lamps

Warning lamps in the driver’s message center alert the driver of situations with the ATS.

- An illuminated DPF lamp indicates a regen is needed. See Fig. 6.2.
- A slow, 10-second flashing of the high exhaust system temperature (HEST) lamp alerts the driver that a parked regen is in progress, but the exhaust temperatures are still relatively cool. It also indicates that the high-idle speed is being controlled by the engine software, not the driver. See Fig. 6.3.
- A steadily illuminated HEST lamp alerts the operator of high exhaust temperatures when vehicle speed is below 5 mph (8 km/h) while it
is performing an automatic regen, and during a parked regen.

- An illuminated DEF warning lamp in the gauge, indicates that the DEF tank should be refilled at the next opportunity.

Parked Regen

DANGER

During parked regeneration, exhaust temperatures are very high, and could cause a fire, heat damage to objects or materials, or personal injury to persons near the exhaust outlet.

Before initiating a parked regeneration, make certain the exhaust outlets are directed away from structures, trees, vegetation, flammable materials, and anything else that may be damaged or injured by prolonged exposure to high heat.

A reference label is included with the driver's documentation package initially in the glove box, that explains the ATS warnings, and actions required to avoid further engine protection sequences. See Fig. 6.4.

IMPORTANT: The vehicle can have two different ways to initiate a parked regen, depending on the body builder. If there is not a regen switch on the dash, go to the *Shorting Plug* section.

The regen switch, located on the dash, is used to initiate a parked regen of the aftertreatment device. See Fig. 6.5.

NOTE: The DPF lamp must be illuminated before the regen switch will initiate a parked regen.

To initiate a parked regeneration, perform the following steps.

1. Park the vehicle away from all combustible and flammable materials. Chock the tires. Start and warm the engine until the coolant temperature is at least 150°F (66°C).

2. Set the parking brake. If the parking brake was already set, it must be released, then set again.

 For manual transmissions, fully depress the clutch pedal, put the transmission in neutral, then release the pedal.

 If the vehicle has a two-pedal automated transmission, shift it into gear, then back to neutral.

 IMPORTANT: The driver is responsible for ensuring, during the entire regen cycle, that anything that could be harmed by exposure to high heat does not come in contact with the exhaust gasses flowing from the outlets.

3. Press and hold the regen switch for 4 seconds. The engine will increase rpm and initiate the regen process.

4. The regen cycle will finish after 20 to 60 minutes, at which time engine idle speed will drop to normal and the vehicle can be driven normally. The HEST lamp may be illuminated, but will go out when the vehicle speed exceeds 5 mph (8 km/h), or the system has cooled to normal operating temperature.

5. To stop a parked regen at any time during the process, engage the clutch, brake, or accelerator pedal, or turn off the engine.
Shorting Plug

NOTE: The DPF lamp must be illuminated before the shorting plug will initiate a parked regen.

The shorting plug is used to initiate a parked regeneration of the ATD. The shorting plug is located under the dash, next to the steering column. Mounting locations vary. See Fig. 6.6.

To initiate a parked regeneration, perform the following steps.

1. Park the vehicle away from all combustible and flammable materials. Chock the tires. Start and warm the engine until the coolant temperature is at least 150°F (66°C).

2. Set the parking brake. If the parking brake was already set, it must be released, then set again. For manual transmissions, fully depress the clutch pedal, put the transmission in neutral, then release the pedal.

If the vehicle has a two-pedal automated transmission, shift it into gear, then back to neutral.
IMPORTANT: The driver is responsible for ensuring, during the entire regen cycle, that anything that could be harmed by exposure to high heat does not come in contact with the exhaust gasses flowing from the outlets.

3. Disconnect the shorting plug, as follows.
 3.1 Slide the secondary red lock away from the white cover. See Fig. 6.6, Ref. 2.
 3.2 Push the primary lock in. See Fig. 6.6, Ref. 1.
 3.3 Pull the plug apart. See Fig. 6.6, Ref. 3.

4. Wait four seconds.

5. Connect the shorting plug.

6. Engine rpm will rise, and initiate the regen process.

7. The regen cycle will finish after 20 to 60 minutes, at which time engine idle speed will drop to normal and the vehicle can be driven normally. The HEST lamp may be illuminated, but will go out when the vehicle speed exceeds 5 mph (8 km/h), or the system has cooled to normal operating temperature. The DPF light will shut off.

8. To stop a parked regen at any time during the process, engage the clutch, service brake, or accelerator pedal, or turn off the engine.

DPF Maintenance

Eventually ash will accumulate in the DPF and the filter will require servicing. DPF servicing must be performed by an authorized technician, following the engine manufacturer’s instructions. A record must be maintained for warranty purposes, that includes:

- date of cleaning or replacement;
- vehicle mileage;
- particulate filter part number and serial number.

Diesel Exhaust Fluid and Tank, EPA10 and Newer Engines

Diesel Exhaust Fluid

Diesel exhaust fluid (DEF) is used in the ATS to lower NOx in the exhaust stream. DEF is colorless and close to odorless (it may have a slightly pungent odor similar to ammonia). It is nontoxic, nonflammable, and biodegradable. It is mildly corrosive to aluminum, but does not affect the strength or structure of the aluminum.

White crystals may be noticeable around components that come into contact with DEF. The crystals are easily removed with water.

DEF consumption varies depending on ambient conditions and vehicle application.

Freezing Conditions

DEF freezes to slush at around 12°F (-11°C). It is not damaged or destroyed if frozen, and is fully usable when thawed. The DEF in the tank is allowed to freeze while a vehicle is non-operational. At start-up, normal operation of the vehicle is not inhibited if the DEF is frozen; an immersion heater with engine coolant flowing through it warms the DEF once the engine is running, allowing the SCR system to operate.

Pre-2013 DEF supply lines are electrically-heated and are purged when the engine is shut down; complete purging of the DEF lines requires approximately five minutes after the engine is shut down.

DEF supply lines with engine model year 2013 and newer are designed to survive freezing conditions while containing DEF, so purging is not required.

DEF Tank

Engines that are compliant with EPA10 and newer regulations are equipped with a DEF tank located either forward or behind the aftertreatment system.
Other DEF tank locations are used if an inline ATS is installed on the vehicle. The DEF tank has a 19 mm filler neck inlet that prevents the hose from a diesel outlet from being inserted, and has a blue cap for easy identification.

The DEF tank will require filling a minimum of approximately every second diesel refuel depending on the DEF tank capacity. Shuttle Buses are equipped with a 13-gallon tank capacity. DEF consumption is approximately 2% of fuel consumption, dependent on vehicle operation. For every 50 gallons of diesel fuel consumed, approximately 1 gallon of DEF will be consumed.

Ametek DEF Warnings and Engine Limits

IMPORTANT: Ignoring the DEF warning lights and not refilling the DEF will result in limited engine power with a speed limit of 5 mph (8 km/h) eventually being applied. See the Cummins Operation and Maintenance Manual for further information.

DEF Level Low—Initial and Critical Warnings

When the DEF level reads low the following warnings strongly encourage the driver to refill the DEF tank. See Fig. 6.7.

- The CHECK engine lamp flashes for 30 seconds when the vehicle is started.
- The DEF warning lamp illuminates.
- One bar of the DEF-level lightbar illuminates solid amber.

Engine performance is limited, with progressively harsher engine power limits applied.

The DEF tank must be filled to cancel the warning sequence.

DEF Empty

When the DEF level reads empty, the following warnings are activated. See Fig. 6.8.

- The DEF warning lamp flashes.
- The CHECK engine lamp illuminates.
- One bar of the DEF-level lightbar flashes red.
- A brief audible alert notifies the driver.

Engine performance is limited, with progressively harsher engine power limits applied.

The DEF tank must be filled to cancel the warning sequence.

DEF Level Empty and Ignored

If the empty warning is ignored and the DEF is not refilled, the DEF warning lamp flashes, one bar of the DEF-level lightbar flashes red, and the red STOP engine lamp illuminates in addition to the CHECK engine warning lamp. A brief audible alert notifies the driver. See Fig. 6.9.

If the DEF tank is not refilled, a 5 mph (8 km/h) speed limit will be applied after the next engine shutdown, or while parked and idling.

NOTICE

Once contaminated DEF has been detected in the SCR system, the vehicle must be taken to an authorized service center to check the SCR system for damage, and to deactivate the warning light and engine limits.
DEF Quality or SCR Tampering

If contaminated DEF or tampering is detected, the DEF warning light flashes, and engine performance is limited with progressively harsher engine power limits applied. If the fault is not corrected, the CHECK engine lamp illuminates, then the STOP engine lamp illuminates and a 5 mph (8 km/h) speed limit will be applied after the next engine shutdown, or while parked and idling. See Fig. 6.9.

OptiView™ DEF Warnings and Engine Limits

NOTE: The OptiView instrument panel has a DEF gauge that contains a low DEF warning lamp, which activates when the DEF tank needs to be refilled. Along with the DEF warning lamp activation, warning statements appear in the center of the OptiView panel.

DEF Level—Initial Warning

When the DEF level becomes low, the following warning strongly encourages the driver to refill the DEF tank.

- The CHECK engine lamp flashes for 30 seconds when the vehicle is started.
- The DEF warning lamp illuminates.

The DEF tank must be filled to cancel the warning sequence.

DEF Low

When the DEF level reads low, the following warnings are activated.

- The CHECK engine lamp flashes for 30 seconds when the vehicle is started.
- The DEF warning lamp illuminates.
- A LOW DEF message appears in the center of the instrument panel.
- One bar of the DEF-level lightbar illuminates amber.
- A brief audible alert notifies the driver.

Engine performance is limited, with progressively harsher engine power limits applied. The DEF tank must be filled to cancel the warning sequence.

DEF Empty

When the DEF tank registers empty, the following warnings are activated.

- The DEF warning lamp flashes.
- A VERY LOW DEF message appears in the center of the instrument panel.
- One bar of the DEF-level lightbar flashes red.
- The CHECK engine lamp illuminates.

Engine performance is limited, with progressively harsher engine power limits applied. The DEF tank must be filled to cancel the warning sequence.

DEF Level Empty and Ignored

If the empty warning is ignored and the DEF is not refilled, the DEF warning lamp flashes, one bar of the DEF-level lightbar flashes red, and the red STOP engine lamp illuminates in addition to the CHECK engine warning lamp. A 5 mph (8 km/h) speed limit is applied after the next engine shutdown or while parked and idling.

DEF Quality or SCR Tampering

--- NOTICE ---

Once contaminated DEF has been detected in the SCR system, the vehicle must be taken to an authorized service center to check the SCR system for damage, and to deactivate the warning light and engine limits.

If contaminated DEF or tampering is detected, the DEF warning light flashes, and engine performance...
is limited with progressively harsher engine power limits applied. If the fault is not corrected, the CHECK engine lamp illuminates, then the STOP engine lamp illuminates and a 5 mph (8 km/h) speed limit will be applied after the next engine shutdown, or while parked and idling.

Engine Shutdown

NOTICE

Except in an emergency, do not shut down the engine when the coolant temperature is above 194°F (90°C). To do so could damage the engine.

1. With the vehicle stopped, place the transmission in the neutral (N) position and set the parking brake.

2. It is important to idle an engine for 3 to 5 minutes before shutting it down. This allows the lubricating oil and the coolant to carry heat away from the combustion chambers, bearings, shafts, and seals.

 IMPORTANT: Long periods of idling are not good for an engine because the combustion chamber temperatures drop so low that the fuel may not burn completely. This will cause carbon to clog the piston rings and may result in stuck valves.

3. Do not idle the engine for excessively long periods.

4. Turn the ignition key to the OFF position and shut down the engine.
Transmissions

Allison Automatic Transmissions
Allison Automatic Transmissions

General Information

Allison five- and six-speed automatic transmissions have six or seven shift positions on the selector lever. The selector lever is lighted for night driving. Each forward shift position provides a range of forward gears that are selected automatically according to the speed of the vehicle, engine temperature, and throttle position. The 1000 Series, 2000 Series, and 3000 Series are fully automatic transmissions. For Allison Transmission Operators Manual and Warranty Information for on-highway vehicle applications, visit www.allisontransmission.com/my-allison/customer or scan the QR code. See Fig. 7.1.

Driving Precautions

The vehicle operator should use care when accelerating or downshifting on slippery road surfaces. Sudden acceleration or engine braking, caused by shifting to a lower gear range, can result in a loss of vehicle control. This is very important on snow- or ice-covered roads. See Chapter 9 for information on brake operation.

If the vehicle is stuck in sand or mud, do not attempt to pull the vehicle out under its own power. Request professional towing assistance.

NOTICE

Do not attempt to rock the vehicle. Rocking the vehicle, even at low speeds, may cause engine overheating, axle damage, transmission damage or failure, or tire damage.

Do not coast the vehicle in neutral. Severe transmission damage may result and the vehicle will not have the benefit of engine braking.

WARNING

To reduce the risk of personal injury, before going down a steep or long grade, reduce speed and downshift the transmission. Do not hold the brake pedal down too long or too often while going down a steep or long grade. This could cause the brakes to overheat, reducing their effectiveness. As a result, the vehicle will not slow down at the usual rate. Failure to take these steps could result in loss of vehicle control.

To avoid skidding on slippery roads, do not downshift into "1" (Low) at speeds above 20 mph (32 km/h). On slippery surfaces, avoid quick movements of the steering wheel. Decrease your speed and allow for extra stopping distance required by these conditions.

Avoid driving through flooded areas unless you are sure the water is no higher than the bottom of the wheel rims. Drive through slowly. Allow adequate stopping distance since wet brakes do not grip well. After driving through water, gently apply the brakes several times while the vehicle is moving slowly to dry the brakes.

When driving on icy or gravelled surfaces, reduce speed. Avoid sharp turning maneuvers.

Series 1000 PTS, 2100 PTS, 2200 PTS, B210, and B220 Transmission Operation

WARNING

Do not leave the vehicle unattended with the engine running. If you leave the vehicle and the engine is running, the vehicle can move suddenly, which could result in personal injury or property damage.

Safety Precautions

1000 PTS, 2200 PTS, B220 Series

On vehicles with Allison 1000 PTS, 2200 PTS, and B220 transmissions, do the following steps if you have to leave the cab with the engine running (for example, when checking the transmission fluid):
With Park (P) Position
1. Bring the vehicle to a complete stop using the service brake.
2. Ensure that the engine is at low idle rpm.
3. Put the transmission in Park (P).
4. Apply the parking brake and make sure that it is properly engaged.
5. Engage the Park (P) range by slowly releasing the service brake.
6. Chock the rear tires and take any other steps necessary to keep the vehicle from moving.

2100 PTS and B210 Series
Without Park (P) Position
1. Bring the vehicle to a complete stop using the service brake.
2. Ensure that the engine is at low idle rpm.
3. Put the transmission in Neutral (N).
4. Apply the parking brake, and make sure it is properly engaged.
5. Chock the rear tires and take any other steps necessary to keep the vehicle from moving.

Range Inhibit Indicator, 2000 Series
A RANGE INHIBIT indicator is a standard feature of the 2000 series transmissions. The RANGE INHIBIT indicator comes on to alert the driver that transmission operation is being inhibited and that the range shifts being requested by the driver may not occur. When certain operating conditions are detected by the transmission control module (TCM), the controls will lock the transmission in the current operating range.

Shift inhibits occur under the following conditions:
- Shifts from neutral to reverse or from neutral to a forward range when the engine is above idle, greater than 900 rpm.
- Forward/reverse directional shifts are typically not permitted if appreciable output shaft speed is detected.
- When some types of unusual transmission operating conditions are detected by the TCM, the TCM temporarily limits transmission operation until the vehicle can be driven to a service location. When this type of situation is detected, the TCM will lock the transmission in a safe gear range.
- The TCM will prevent shifts from park or neutral to range when auxiliary equipment, such as a power takeoff (PTO) unit, is in operation.
- If a shift from a higher to a lower gear causes the engine to overspeed.

Operating Instructions, On-Highway Transmissions
On-highway transmissions are electronically controlled. The shift selector provides four forward ranges and one reverse range. A T-handle shift control is used by the driver to select the ranges. See Fig. 7.2.

P (Park)
Use park when turning the engine on or off, to check vehicle accessories, to operate the engine in idle for longer than 5 minutes, and for stationary operation of the power takeoff, if so equipped. This position places the transmission in neutral and engages the park pawl of the transmission.

NOTE: This does not apply the parking brake.
Transmissions

NOTE: The park pawl is standard on the 2200 series transmission. The park pawl effectively grounds the transmission output shaft, thereby preventing rotation of the driveline. Provided the vehicle is stationary, selecting P (Park) on the shift selector places the transmission in Neutral and engages the park pawl.

PB (Auto-Apply Parking Brake, optional on 2000 Series)
The auto-apply parking brake places the transmission in neutral and applies the parking brake.

R (Reverse)
Reverse is used to back the vehicle. When the selector is in reverse, the reverse warning signal will sound. Always bring the vehicle to a complete stop before shifting from a forward range to reverse, or from reverse to a forward range.

Do not idle in reverse for more than 5 minutes. Select P (park), PB (auto-apply parking brake), if equipped, or N (neutral) when time at idle exceeds 5 minutes.

NOTE: The shift into reverse may not succeed if a range inhibitor is active. Check for illumination of the RANGE INHIBIT indicator.

N (Neutral)
The neutral position places the transmission in neutral. This position is used when starting the engine and for stationary operation.

When neutral is selected, the vehicle service brakes, parking brake, or emergency brake must be applied. Selecting neutral does not apply vehicle brakes unless an auxiliary system to apply the parking brake is installed.

Do not let the vehicle coast in neutral. If the vehicle is allowed to coast in neutral, the engine brake will not work and you could lose control of the vehicle.

D (Drive)
In the drive position, the transmission will initially go into first range when drive is selected. As vehicle speed increases, the transmission will upshift automatically through each available range up to fourth range or fifth range. As the vehicle slows, the transmission will downshift automatically.

When going downhill, downshift to a lower transmission range to increase engine braking and to help maintain control. The transmission has a feature to prevent automatic upshifting above the lower range selected. However, during downhill operation, the transmission may upshift to the next higher range, if the engine is exceeding its governed speed in the lower range.

NOTE: The shift into drive may not succeed if a range inhibitor is active. Check for illumination of the RANGE INHIBIT indicator.

4 and 3 (Fourth and Third Ranges, optional)
Use the fourth or third range for city traffic and for braking on steep downgrades.

3 and 2 (Third and Second Ranges, standard)
Use the third or second range for heavy city traffic and for braking on steeper downgrades.

1 (First Range)
Use first range when pulling through mud or deep snow, when maneuvering in tight spaces, or when driving up or down very steep grades. First range provides the vehicle with its maximum driving torque and maximum engine braking effect.

NOTE: To have the transmission select these ranges automatically, leave the selector lever in D (drive).

Operating Instructions, 2100 Series (Arens SBW)

General Information
The Arens shift-by-wire (SBW) push-button shift selector is part of an electronic shift control system used with Allison series 2100 5-speed automatic transmissions. An electronic actuator is mounted to the transmission.

The 2100 series transmissions have a park pawl and the SBW selector has a Park (P) position. See Fig. 7.3.

In case the vehicle needs to be towed and the SBW system cannot be activated to move the transmission out of Park (P), a manual procedure is provided to shift the transmission. At the actuator, on the transmission, a port is provided to insert an Allen wrench.
Always place the transmission in the Park (P) or Neutral (N) position and set the parking brake before releasing the service brakes and exiting the vehicle. Otherwise the vehicle could move unexpectedly and cause an accident, possibly resulting in personal injury and property damage.

P (Park)
The Park (P) button shifts the transmission to Neutral (N) and engages the park pawl. When Park (P) is selected, the monitor side of the display window will show a letter P.

IMPORTANT: If the ignition switch is turned to the OFF position before selecting Park (P), a buzzer will sound and the monitor display will show the gear that is currently engaged. Select Park (P) to turn off the buzzer and the display. Also, with the engine not running (ignition switch in the ON position and park pawl not engaged), a buzzer will sound and the monitor display will show an N for Neutral (N). Select Park (P) to turn off the buzzer and the display.

R (Reverse)
Select the R button to place the transmission in Reverse (R). An R will appear on both sides of the display window.

N (Neutral)

WARNING
Do not leave the vehicle if the transmission is in Neutral (N) without first setting the parking brake. The vehicle could roll or move unexpectedly and cause an accident, possibly resulting in personal injury and property damage.

Select the N button to place the transmission in Neutral (N). An N will appear on both sides of the display window. The vehicle may be started in Neutral (N).

D (Drive)
Select the D button to place the transmission in Drive (D). The transmission will automatically shift through the full range of First (1) through Fifth (5) gears. When Drive (D) is first selected, the display will show D1, indicating that Drive (D) was selected and that First (1) gear is engaged. As the transmission automatically upshifts and downshifts, the display will show the gear currently engaged (D1, D2, D3, D4, or D5).

Upshift/Downshift Buttons
With the transmission in Drive (D), select the downshift (down arrow) button to manually downshift one gear at a time, from Fifth (5) to First (1). The select display will show the selected gear and the monitor
display will show the gear currently engaged. From D5 at the top of the Drive (D) range, the display will show 44, 33, 22, and 11 as progressively lower gears are manually selected.

NOTE: The transmission will remain in the manually selected gear until Drive (D) is selected. Select Drive (D) at any time during the manual downshifting sequence (or upshift progressively to Drive [D] using the up arrow button) and the transmission will upshift and downshift automatically.

With the transmission in 11, 22, 33, or 44, select the upshift (up arrow) button to manually upshift one gear at a time until Drive (D) is selected. The select display will show the selected gear and the monitor display will show the gear currently engaged. From 11 at the bottom of the Drive (D) range, the display will show 22, 33, 44, and D5 as progressively higher gears are manually selected.

NOTE: The transmission will remain in the manually selected gear until Drive (D) is selected. Select Drive (D) at any time during the manual upshifting sequence and the transmission will upshift and downshift automatically.

Mode Button
The function of the mode button may vary from vehicle to vehicle. The label above the button identifies the function.

Mode Indicator LED
A light in the upper right-hand corner of the mode button illuminates when the mode function is active.

Service Display
IMPORTANT: An illuminated service display may indicate a loss of safety back-up systems. Use extra care when shifting to ensure that the transmission is operating properly.

The service display illuminates if a fault is detected in the SBW system. Have a qualified technician inspect the SBW system as soon as possible.

Select/Monitor Display
A flashing select/monitor display indicates that the transmission (and not the SBW system) has inhibited a selected transmission operation. See the Allison Transmission Operator’s Manual for more information.

Calibrating Arens SBW
If the vehicle shuts down in gear and will not start, check the two 10-amp fuses. Then check to see if either one or twoNs appear on the transmission shifter and the vehicle will not start. To reset the transmission shifter, turn the ignition to the ON position. On the transmission shifter, go through the following sequence of N-R-N-D-N. This should reset the shifter and allow the vehicle to start.

Operating Instructions, 3000/B300 Series
The Allison 3000 series transmission is electronically controlled and comes with a push-button shift control that provides five or six forward ranges and one reverse range. The push-button shift selector has an R (reverse), an N (neutral), a D (drive), an up arrow, a down arrow, a mode button, and a digital display. See Fig. 7.4.

R (Reverse)
Press the R button to select reverse. The digital display will show R when reverse is selected. Always bring the vehicle to a complete stop and let the engine return to idle before shifting from a forward range to reverse, or from reverse to a forward range.
NOTICE

Do not idle in reverse for more than 5 minutes. Extended idling in reverse may cause transmission overheating and damage. Always select neutral if time at idle is longer than 5 minutes.

Do not idle in reverse for more than 5 minutes. Select neutral when time at idle exceeds 5 minutes.

NOTE: The shift into reverse may not succeed if a range inhibitor is active. When reverse is selected, always be sure that R is not flashing.

N (Neutral)

WARNING

When starting the engine, make sure that the service brakes are applied. Failure to apply the service brakes may result in unexpected vehicle movement, which could cause severe personal injury or death. Failure to apply the vehicle parking brakes when the transmission is in neutral may allow the vehicle to move unexpectedly, possibly causing property damage or personal injury.

Press the N button to select neutral. The digital display will display N when neutral is selected. It is not necessary to press neutral before starting the vehicle. The electronic control unit (ECU) or TCM automatically places the transmission in neutral at startup.

When neutral is selected the vehicle service brakes, parking brake, or emergency brake must be applied. Selecting neutral does not apply vehicle brakes unless an auxiliary system to apply the parking brake is installed.

WARNING

Do not coast in neutral. Coasting in neutral can cause an accident, possibly resulting in severe personal injury or death.

Do not let the vehicle coast in neutral. If the vehicle is allowed to coast in neutral, the engine brake will not work and you could lose control of the vehicle.

Always select neutral before turning off the engine. Neutral is also used during stationary operation of the power takeoff if your vehicle is equipped with a PTO.

D (Drive)

When the D button is pushed, the highest forward range will appear in the display. The transmission will normally go into first range when drive is selected (except for those units programmed to start in second range). As vehicle speed increases, the transmission will upshift automatically through each range. As the vehicle slows, the transmission will downshift automatically.

NOTE

Do not idle in drive for more than 5 minutes. Extended idling in drive may cause transmission overheating and damage. Always select neutral if time at idle is longer than 5 minutes.

NOTE: The shift into drive may not succeed if a range inhibitor is active. When drive is selected always be sure that D is not flashing.

5, 4, 3, and 2 (Fifth, Fourth, Third, and Second Ranges)

Occasionally, road conditions, load, or traffic conditions will make it desirable to restrict automatic shifting to a lower range. Lower ranges provide greater braking for going down grades. The lower the range, the greater the braking effect.

Push the up or down arrows on the push-button shift selector to select individual forward ranges. The digital display will display your choice of range. When a lower range is selected, the transmission may not downshift until the vehicle speed or engine RPM (engine governed speed) is reduced.

WARNING

When going downhill, use a combination of downshifting, braking, and other retarding devices to control vehicle speed and the engine’s rated governed speed. Failure to do so could reduce vehicle braking, possibly causing loss of vehicle control and resulting in personal injury or property damage.

When going downhill, downshift to a lower transmission range to increase engine braking and to help maintain control. The transmission has a feature to prevent automatic upshifting above the lower range selected. However, during downhill operation, if the engine governed speed is exceeded in the lower
range, the transmission may upshift to the next higher range.

1 (First Range)

Use the first range when pulling through mud or deep snow, when maneuvering in tight spaces, or when driving up or down steep grades. First range provides the vehicle with its maximum driving torque and maximum engine braking effect. Push the down arrow until the first range appears on the display.

Up and Down Arrows

When a lower range is desired, after D has been pressed, press the down arrow until the desired range is shown on the display. Pressing the down arrow continuously causes the range position to continue to go down until the button is released or the lowest range is attained.

When the transmission is in drive and the down arrow has the transmission in a lower range position, press the up arrow to shift to a higher selector position. Pressing the up arrow continuously causes the range position to continue to rise until the button is released or the highest available position is attained.

Pressing the up or down arrows does not override the transmission automatic shifting operation. If a higher or lower position is selected, the transmission continues shifting through the ranges according to the vehicle operating characteristics until the highest or lowest selection position is reached.

Mode Button

The MODE button starts a specialized input or output function that has been previously programmed into the ECU or TCM. Pressing the MODE button changes transmission operation for a specific function.

Mode Indicator LED

When the MODE button is pressed, the mode indicator LED illuminates. A mode identification label, located above the MODE button, identifies the function associated with a mode change.

Digital Display

The dual digital display shows both the selected range (SELECT) and actual range attained (MONITOR). The single digital display shows the selected range.

Oil Level Sensor

Allison 3000 and B300 Series transmissions have an electronic oil level sensor to read fluid level information. The fluid level diagnostic will display whether the oil level is OK, too low, or too high. It will also display a default code and indicate if the preconditions (of receiving the fluid level information) are not met.

IMPORTANT: Maintain the proper fluid level at all times. If the fluid level is too low, the converter and clutch do not receive an adequate supply of fluid. If the level is too high, the transmission may shift erratically or overheat.

To access the oil level display mode, park the vehicle on a level surface, shift to N (Neutral), apply the parking brake, and idle the engine. Then simultaneously press both the up and down arrows once. The oil level will display at the end of a two-minute countdown.

Diagnostic Codes

Diagnostic codes are numerical indications relating to a malfunction in transmission operation. These codes are logged in the TCM/ECU memory. The most severe or most recent code is listed first. A maximum of five codes (numbered d1-d5) may be listed in memory at one time. If the mode indicator LED is illuminated, the displayed code is active. If it is not illuminated, the displayed code is not active.

NOTE: During normal operation, an illuminated mode indicator LED signifies the specialized mode operation is in use.

To enter diagnostics mode, first park the vehicle and apply the parking brake. Then simultaneously press both the up and down arrows twice.

Automatic Transmission Multifunction Stalk Switch

Refer to the Allison website for additional information: www.allisontransmission.com/my-allison/customer.

Some vehicles are equipped with a multifunction stalk switch shown in Fig. 7.5 and Fig. 7.6. This control can be used to request direction, neutral, low, manual shifts, change driving mode, preselect lower ranges, and set engine brake levels. Forward shifts can be made either automatically or by using manual mode. See Table 7.1 for an overview of control functionality.
NOTE: On some vehicles, the engine brake only has off and high intensity options.

The transmission has electronic shift controls that can be programmed to allow the use of different numbers of geared speeds. For instance, the transmission can be programmed to operate as a 4-speed, 5-speed, or 6-speed unit in the “primary” shift mode. If needed, a “secondary” shift mode can be programmed to provide another shift configuration to optimize vehicle use under different operating conditions. To activate a secondary shift mode, or other special functions programmed into the electronic control unit (ECU), briefly depress the mode switch on the multifunction stalk switch control; see Fig. 7.5, Ref. B and Ref. C.

Direction Switch

Use the direction switch to request drive (D), neutral (N), or reverse (R). See Fig. 7.5, Ref. A.

Mode Switch

The driving mode can be changed using the mode switch on the shift control. See Fig. 7.5, Ref. B and Ref. C.

Gear Switch

Gear shifts can be requested manually; push the lever away to request a downshift, or pull the lever toward you to request an upshift. See Fig. 7.5, Ref. D and E. See Table 7.1 for more information about upshift and downshift requests.
Functionality, Automatic Transmission Shift Control

<table>
<thead>
<tr>
<th>Direction</th>
<th>Action/Position</th>
<th>Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Forward gears</td>
<td>All Transmissions</td>
</tr>
<tr>
<td>N</td>
<td>Neutral</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Reverse gears</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Action/Position</th>
<th>Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short press</td>
<td>Switch to automatic mode when in manual mode.</td>
<td></td>
</tr>
<tr>
<td>Long press</td>
<td>Switch between economy or performance modes.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gear</th>
<th>Allison Automatic Transmissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short pull on the lever</td>
<td>Upshift, single gear</td>
</tr>
<tr>
<td>Pull on the lever in quick repetitions</td>
<td>Upshift, multiple gears</td>
</tr>
<tr>
<td>Short push on the lever</td>
<td>Downshift, single gear</td>
</tr>
<tr>
<td>Push on the lever in quick repetitions</td>
<td>Downshift, multiple gears</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine Brake</th>
<th>Engine Brake Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lever at position 0 (top)</td>
<td>Engine brake off</td>
</tr>
<tr>
<td>Lever at position 1</td>
<td>Low intensity</td>
</tr>
<tr>
<td>Lever at position 2</td>
<td>Medium intensity</td>
</tr>
<tr>
<td>Lever at position 3 (bottom)</td>
<td>High intensity</td>
</tr>
</tbody>
</table>

Table 7.1, Functionality, Automatic Transmission Shift Control

Engine Brake

NOTE: On some vehicles, the engine brake only has off and high intensity options.

The engine brake is controlled by the lever position as shown in **Fig. 7.6**. At the top position, the engine brake is off, and at the three lower positions, the engine brake is on and the intensity (low, medium, high) increases with each step down. For more information about using the engine brake, see **Chapter 9**.

Power Up and Shift into Gear

1. Ensure the parking brake is set and neutral (N) is selected on the shift control.
2. Start the engine.
3. Apply the service brake.
4. Select the desired starting gear.
5. Release the parking brake.
6. Release the service brake and apply the accelerator.

Gear Display

The current transmission gear and driving mode are displayed in the instrument panel. See Fig. 7.7.

Operation Tips

NOTICE

Do not allow the vehicle to coast in neutral. This can result in severe transmission damage. Also, no engine braking is available.

WARNING

Never shift from neutral (N) to drive (D) or reverse (R) at engine speeds above idle. The vehicle will lurch forward or backward, which could cause property damage and personal injury.

NOTICE

The engine should never be operated for more than thirty seconds at full throttle with the transmission in gear and the output stalled. Prolonged operation of this type will overheat the transmission fluid and will result in severe damage to the transmission.

The following tips highlight important operation principles.

- Use reverse (R) to back the vehicle. Completely stop the vehicle before shifting from a forward gear to reverse, or from reverse to forward.
- Select drive (D) for all normal driving conditions. The vehicle will start out in 1st gear (unless the transmission is programmed with 2nd gear start), and as speed increases, the transmission will upshift through each gear automatically. As the vehicle slows down, the transmission will downshift to the correct gear automatically.
- The pressure of your foot on the accelerator pedal influences the automatic shifting. When the pedal is fully depressed, the transmission will automatically upshift at higher engine speeds. A partially-depressed position of the pedal will cause the upshifts to occur at a lower engine speed.
- Occasionally the road, load, or traffic conditions make it desirable to restrict the automatic shifting to a lower range. The lower the gear range, the greater the engine braking power. When in manual mode, push or pull on the multifunction stalk switch to reach the desired gear. In the lower gear ranges, the transmission will not upshift above the highest gear selected unless the hold override upshift speed is exceeded.
- Use neutral and apply the parking brake when the vehicle is parked with the engine running.

Automatic Mode (A)

In automatic drive mode, upshifts and downshifts are made by the transmission without driver intervention. Automatic mode is the default start mode. If in manual mode, a short push on the shift control mode switch activates the automatic mode (A). Rotate the D/N/R switch to drive (D), and press down on the throttle pedal. The transmission will shift automatically.

NOTE: If attempting to select a non-neutral mode without applying the service brakes, the transmission will not shift into gear. To shift into gear, select neutral, apply the service brakes, and select the desired mode again.

In drive, the start gear is automatically selected. The transmission automatically performs upshifts and downshifts.

Manual Mode (M)

In manual mode, the driver selects the maximum allowed range. This may be helpful when traversing steep grades, for example.

When in automatic mode and with the D/N/R switch set to drive (D), a long push on the shift control
mode switch activates the manual mode (M). To increase selected range, pull the lever up (towards you); to decrease the selected range, push the lever down (away from you). The transmission will not upshift above the selected range unless the hold override upshift speed is exceeded.

When the transmission is in manual mode, the driver display shows the gear with an M. The current gear position appears next to the M with the target gear position next to it; M5 5 for example.

NOTE: The transmission may deny a downshift if the engine speed would fall outside of the acceptable range.

NOTE: If attempting to select a non-neutral mode without applying the service brakes, the transmission will not shift into gear. To shift into gear, select neutral, apply the service brakes, and select the desired mode again.
Steering System

General Information .. 8.1
Power Steering System .. 8.1
Tilt/Telescope Steering Column ... 8.1
General Information

When there is no load on the vehicle and the front tires are pointed straight ahead, the steering wheel spokes should be at the 9 o’clock and 3 o’clock positions, or within 10 degrees to either side. See Fig. 8.1. If the steering wheel is not aligned correctly, before operating the vehicle, check the steering system for wear or incorrect adjustment of the linkage and steering gear, or take the vehicle to an authorized Freightliner dealer for troubleshooting and repair.

Power Steering System

WARNING

Driving the vehicle without the power-assist feature of the steering system requires much greater effort, especially in sharp turns or at low speeds, which could result in an accident and possible injury.

The power steering pump, driven by the engine, provides the power assist for the steering system. If the engine is not running, power assist will not function.

If the power-assist feature ceases to function for any reason, bring the vehicle to a safe stop. Do not drive the vehicle until the cause of the problem has been corrected.

Avoid excessive strain on the power steering system. If the front tires become lodged in a deep chuckhole or rut, drive the vehicle out, instead of using the steering system to lift the tires from the hole. Avoid turning the tires when they are against a curb, as this places a heavy load on steering components and could damage them.

Tilt/Telescope Steering Column

Standard Tilt/Telescope Steering Column

WARNING

Never try to tilt or telescope the steering column while driving the vehicle. Doing so could cause loss of vehicle control and result in personal injury, or death, or property damage.

To tilt the steering column or telescope the steering wheel, press down on the foot pedal (located below the steering wheel) to release the steering column lock. Adjust the column and steering wheel to the desired position. Release the foot pedal to lock the steering column and steering wheel in place. See Fig. 8.2.

NOTE: For safety, the steering column is locked at all times unless the foot pedal is depressed.

Power Tilt/Telescope Steering Column and Adjustable Pedals

WARNING

Never try to tilt or telescope the steering column while driving the vehicle. Doing so could cause loss of vehicle control and result in personal injury, or death, or property damage.

Power tilt/telescope steering columns have a toggle switch on the left side of the steering column. To tilt the steering column and telescope the steering wheel, rotate the toggle switch on the left-side of the steering column to the ‘column’ position. See Fig. 8.2. Push the toggle switch up or down to adjust the column to the desired height. Push the switch back toward the dash and the steering wheel goes in; pull the switch toward the driver and the steering wheel comes out. Once the column and steering wheel are at the desired position, rotate the toggle switch to the middle (off) position.

NOTE: Both the brake and throttle pedal position are adjusted at the same time.
Some steering columns are equipped with the toggle switch but it only adjusts the brake and throttle pedals. Use the foot pedal on these vehicles to tilt and telescope the steering wheel.

WARNING

Never try to adjust the brake or throttle pedal position while driving the vehicle. Doing so could cause loss of vehicle control and result in personal injury, or death, or property damage.

To adjust the position of the brake and throttle pedals, rotate the toggle switch on the left-side of the steering column to the 'pedals' position. See Fig. 8.2. Push the toggle switch toward the dash to move the pedals back or pull the toggle switch toward the driver to move the pedals forward. Once the pedals are at the desired position, rotate the toggle switch to the middle (off) position.

NOTE: For safety, the steering column and pedal toggle switch should be in the middle (off) position unless the vehicle transmission is in park (P).

Fig. 8.2, Tilt/Telescope Steering Column
Brake Systems

Hydraulic Brake System ... 9.1
Air Brake System ... 9.2
Brake Burnishing (new vehicle) .. 9.4
Automatic Traction Control .. 9.5
Electronic Stability Control .. 9.5
Engine Brake ... 9.5
Hydraulic Brake System

General Information

The hydraulic brake system includes a power booster, master cylinder, reservoir, hydraulic lines, a brake rotor on each wheel hub, and a brake caliper and pad assembly at each rotor.

IMPORTANT: Make sure that the fluid level in the master cylinder reservoirs is at the bottom of the fill-neck. See Fig. 9.1. Use only heavy-duty brake fluid, DOT 3, in the hydraulic brake system.

The master cylinder controls braking power to the front and rear brakes. The Bendix Hydro-Max® power booster is attached to the rear of the master cylinder and is connected to the power steering system (which provides pressurized power steering fluid). An electrically powered "reserve" pump operates if there is inadequate fluid flow from the power steering pump to the power booster. The brake system warning light comes on if there is a problem within the system. Bring the vehicle to a safe stop and correct the problem before continuing operation of the vehicle.

Meritor WABCO® Antilock Braking System (ABS), Hydraulic Brake Systems

The Meritor WABCO® Antilock Braking System (ABS) is an electronic wheel speed monitoring and control system that works with the hydraulic brake system. ABS passively monitors vehicle wheel speed at all times, but controls wheel speed during an emergency or reduced-traction stop. In normal braking applications, the standard hydraulic brake system is in effect.

IMPORTANT: For proper ABS system operation, do not change tire sizes. The sizes of the tires installed during production are programmed into the electronic control unit. Installing different sized tires could result in inaccurate wheel speed signals to the ECU resulting in a reduced braking force, which could lead to longer stopping distances.

ABS includes signal-generating tone wheels and sensors located in the wheel hubs of each sensed axle. The sensors transmit vehicle wheel speed information to an electronic control unit (located on the front-wall) which interprets these signals to calculate wheel speed and a vehicle reference speed. If the calculations indicate wheel lockup, the appropriate control circuit signals the brake pressure modulator to increase or decrease braking pressure until wheelslip has been corrected.

The electronic control unit also has a safety circuit that constantly monitors the wheel sensors, brake pressure modulator, and the electrical circuitry. The dash warning light (ABS) comes on after the ignition is switched on. Once the vehicle moves faster than about 4 mph (6 km/h), the warning light goes out only if all the vehicle’s ABS components are working.

If, during vehicle operation, the safety circuit senses a failure in any part of the ABS system (a sensor, brake pressure modulator, wiring connection, short circuit, etc.), the warning light (ABS) comes on and the control circuit where the failure occurred is switched to normal braking action. Even if the ABS system is partially or completely inoperative, normal braking ability is maintained. An exception would be if the brake pressure modulator, or hydraulic fluid line is damaged. As these components are an integral
part of the hydraulic brake system, normal braking may be impaired or inoperative.

IMPORTANT: If any of the ABS warning lights do not work as described above, or come on while driving, repair the ABS system immediately to ensure full antilock braking capability.

During emergency or reduced-traction stops, fully depress the brake pedal until the vehicle comes to a safe stop; do not pump the brake pedal. With the brake pedal fully depressed, the ABS system will control all wheels to provide steering control and a reduced braking distance.

Although the ABS system improves vehicle control during emergency braking situations, the driver still has the responsibility to change driving styles depending on the existing traffic and road conditions. For example, the ABS system cannot prevent an accident if the driver is speeding or following too closely on slippery road surfaces.

Operation

Before driving the vehicle, secure all loose items in the vehicle so that they will not fly forward during a full brake application. Check that the brake system warning light is off after releasing the parking brake. If the warning light does not go off, correct the problem before continuing operation of the vehicle.

During normal brake stops, depress the foot brake control pedal until braking action slows down the vehicle. Increase or decrease the pressure on the pedal so that the vehicle comes to a smooth, safe stop. When the forward speed of the vehicle has decreased to almost the idling speed of the engine, shift the transmission into neutral. Apply the parking brake if the vehicle is to be parked.

If the vehicle is equipped with an air suspension system, do not park the vehicle or move the vehicle with the air suspension deflated. This may cause suspension component damage.

Air Brake System

General Information

A dual air brake system consists of two independent air brake systems that use a single set of brake controls. Each system has its own reservoir, plumbing, and brake chambers. The primary system operates the service brakes on the front axle; the secondary system operates the service brakes on the rear axle.

WARNING

Do not operate the vehicle with the front brakes backed off or disconnected. Backing off or disconnecting the front brakes will not improve vehicle handling and may lead to loss of vehicle control, resulting in property damage or personal injury.

Loss of air pressure in the primary system causes the rear service brakes to become inoperative; front brakes will continue to be operated by secondary system air pressure.

Loss of secondary system air pressure causes the front axle brakes to become inoperative; rear service brakes will be operated by the primary system.

Before driving your vehicle, allow time for the air compressor to build up a minimum of 95 psi (655 kPa) pressure in both the primary and secondary systems. Monitor the air pressure system by observing the dual system air pressure gauge and the low-air-pressure warning light and buzzer. The warning light and buzzer shut off when the pressure in both systems reaches 64 to 76 psi (441 to 524 kPa).

The warning light and buzzer come on if air pressure drops below 64 to 76 psi (441 to 524 kPa) in either system. If this happens, check the air system pressure gauges to determine which system has low air pressure. Although the vehicle's speed can be reduced using the foot brake control pedal, either the front or rear service brakes will not be operating, causing a longer stopping distance. Bring the vehicle to a safe stop, and have the air system repaired before continuing.

The spring parking brakes will apply when air pressure drops below 20 to 45 psi (138 to 310 kPa). Do not wait for the brakes to apply automatically; when the warning light and buzzer first come on, immediately bring the vehicle to a safe stop. Before continuing operation of the vehicle, correct the cause of the air loss.

WARNING

Do not drive the vehicle with the parking brakes caged. If the vehicle is driven with the parking brakes caged, there would be no means of stopping the vehicle if a complete loss of air pressure occurred. This could result in serious personal injury or vehicle damage. Before caging the
spring parking brakes, make the connection to a towing vehicle or chock the tires.

Before the vehicle can be moved, the spring parking brakes must be released by manually caging (manually releasing) the parking brake springs.

After correcting the brake system problem, uncage the spring parking brakes before resuming normal vehicle operation.

Meritor WABCO® Antilock Braking System (ABS), Air Brake Systems

The Meritor WABCO® Antilock Braking System (ABS) is an electronic wheel speed monitoring and control system that works with the air brake system. ABS passively monitors vehicle wheel speed at all times, but controls wheel speed during an emergency or reduced-traction stop. In normal braking applications, the standard air brake system is in effect.

IMPORTANT: For proper ABS system operation, do not change tire sizes. The sizes of the tires installed during production are programmed into the electronic control unit. Installing different sized tires could result in a reduced braking force, leading to longer stopping distances.

ABS includes signal-generating tone wheels and sensors located in the wheel hubs of each sensed axle. The sensors transmit vehicle wheel speed information to an electronic control unit (located on the front wall). The control unit’s main circuit interprets the speed sensor signals and calculates wheel speed, wheel retardation, and a vehicle reference speed. If the calculations indicate wheel lockup, the main circuit signals the appropriate solenoid control valve to reduce braking pressure. During emergency braking, the solenoid control valve alternately reduces, increases, or maintains air pressure supply in the brake chamber to prevent front and rear wheel lockup.

The electronic control unit also has a safety circuit that constantly monitors the wheel sensors, solenoid control valves, and the electrical circuitry. The ABS warning light comes on after turning on the ignition switch. Once the vehicle moves faster than about 4 mph (6 km/h), the warning light goes out only if all the ABS components are working.

The Meritor WABCO® ABS system combines one front-axle control channel with the rear axle (the four-sensor system) to form one control circuit. For example, the sensor and solenoid control valve at the left front axle form a control circuit with the sensor and solenoid valve on the right rear axle. If, during vehicle operation, the safety circuit senses a failure in any part of the ABS system (a sensor, solenoid control valve, wiring connection, short circuit, etc.), the warning light (ABS) comes on and the control circuit where the failure occurred is switched to normal braking action. The remaining control circuit will retain the ABS effect. Even if the ABS system is partially or completely inoperative, normal braking ability is maintained. An exception would be if a solenoid control valve (or combination solenoid control valve) is damaged and inoperative. As these components are an integral part of the air brake system, normal braking may be impaired or inoperative.

IMPORTANT: If any of the ABS warning lights do not work as described above, or come on while driving, repair the ABS system immediately to ensure full antilock braking capability.

During emergency or reduced-traction stops, fully depress the brake pedal until the vehicle comes to a safe stop; do not pump the brake pedal. With the brake pedal fully depressed, the ABS system will control all wheels to provide steering control and a reduced braking distance.

Although the ABS system improves vehicle control during emergency braking situations, the driver still has the responsibility to change driving styles depending on the existing traffic and road conditions. For example, the ABS system cannot prevent an accident if the driver is speeding or following too closely on slippery road surfaces.

Operation

Before driving the vehicle, secure all loose items in the cab so that they will not fly forward during a full brake application. Make sure all occupants are wearing seat belts.

During normal brake stops, depress the foot brake control pedal until braking action slows down the vehicle. Increase or decrease the pressure on the pedal so that the vehicle comes to a smooth, safe stop. When the forward speed of the vehicle has decreased almost to the idling speed of the engine, shift the transmission into neutral. Apply the spring parking brakes if the vehicle is to be parked.

The yellow diamond-shaped knob on the control panel actuates the parking brake valve. Pulling out
the knob applies the spring parking brakes. See Fig. 9.2.

NOTICE

If the vehicle is equipped with an air suspension system, do not park the vehicle or move the vehicle with the air suspension deflated. This may cause suspension component damage.

NOTICE

Do not use the spring parking brakes if the service brakes are hot, such as after descending a steep grade. Also, do not use the spring parking brakes during freezing temperatures if the service brakes are wet. To do so could damage the brakes if hot, or cause them to freeze during cold weather.

If the brakes are wet, drive the vehicle in low gear and lightly apply the brakes to heat and dry them. Allow hot brakes to cool before using the spring parking brakes. Always chock the tires.

NOTICE

Never apply the service and spring parking brakes simultaneously. To do so transmits excessive input force to the brake components, which could damage or cause eventual failure of brake actuating components.

Automatic Slack Adjusters

Manually adjusting an automatic slack adjuster to bring the pushrod stroke within legal limits is likely masking a mechanical problem. Adjustment is not repairing. In fact, continual adjustment of automatic slack adjusters may result in premature wear of the adjuster itself. Further, the improper adjustment of some automatic slack adjusters may cause internal damage to the adjuster, thereby preventing it from properly functioning.

Automatic slack adjusters should never be manually adjusted except during routine maintenance of the foundation brakes (e.g., replacing shoes), during slack adjuster installation, or in an emergency situation.

When the brake pushrod stroke exceeds the legal brake adjustment limit on a vehicle, there is likely a mechanical problem with the foundation brake components or the adjuster is improperly installed.

Visit a repair facility as soon as possible when brakes equipped with automatic slack adjusters are determined to be out of adjustment.

Brake Burnishing (new vehicle)

IMPORTANT: Check the brake system and ensure that it is in proper operating condition before attempting the brake burnishing procedure.

1. In a safe area, make 10 sharp brake applications or "snubs," slowing the vehicle from 40 to 20 mph (64 to 32 km/h) using light (approximately 10 to 20 psi [69 to 138 kPa]) brake pressure.

2. Make 10 stops from 20 mph (32 km/h) using moderate (20 to 30 psi [138 to 207 kPa]) brake pressure.

3. Make 2 stops from 20 mph (32 km/h) using hard (full application of air pressure) brake applications.

NOTE: After the hard brake applications, it is normal to notice a hot brake odor.

4. Drive the vehicle 5 to 7 miles (8 to 11 km) allowing the brakes to cool, and then come to a stop.
NOTE: After performing the burnishing procedure, there should be no brake noise and the brakes should have good stopping ability.

5. If the brakes pull the vehicle to one side or grab after the burnishing procedure, contact a Freightliner dealer for assistance.

Automatic Traction Control

Vehicles with electronic engines and ABS may have Automatic Traction Control (ATC). On these vehicles, the ATC system automatically limits wheel spin during reduced-traction situations. In normal braking applications, the standard air brake system is in effect.

During reduced-traction situations, the ATC solenoid valve controls air pressure to the modulator valves and they in turn increase, hold, or reduce pressure to the appropriate brake chambers to provide better traction whenever wheel spin occurs.

When the ATC system is in the NORMAL mode, it will apply gentle braking to the spinning wheel, to improve power to the wheel(s) with better traction. If both wheels are spinning, the system will signal the engine to reduce power.

ATC may include a deep snow and mud option to increase available traction on extra soft surfaces like snow, mud, or gravel. If so equipped, a momentary contact rocker switch labeled ATC will be located on the dash. Pressing the switch will temporarily allow more wheel spin. The activation of the deep snow and mud option is indicated by a flashing WHEEL SPIN lamp. Pressing the switch again will cycle the system back to normal operation.

NOTICE

The deep snow and mud option is intended to be used under specific slippery conditions that require momentary increased wheel spin. Using this option for an extended period of time may damage the vehicle brake system.

After the ignition switch is turned on, the ABS indicator lamp and the WHEEL SPIN indicator lamp illuminate for about three seconds. After three seconds, the warning lamps go out if all of the ABS components are working.

During vehicle operation, solid illumination of the ABS lamp indicates a problem with the vehicle ABS. Repair the ABS immediately to ensure full braking capability.

If equipped with ATC, an amber WHEEL SPIN indicator lamp illuminates if one of the drive wheels spins during acceleration. When the lamp illuminates, partially release the throttle pedal to stop the spinning wheel. The lamp goes out when the wheel stops spinning.

Electronic Stability Control

Electronic Stability Control (ESC) automatically reduces engine power, applies the engine brake, and/or applies the brakes when the acceleration sensor detects that the vehicle is at risk of rolling over. In addition, ESC offers the added capability of complete directional stability (yaw control) in oversteer and understeer conditions to reduce the likelihood of drift-out. The system determines where the driver is attempting to steer the vehicle and how much brake demand is required in order to more precisely control the vehicle in an emergency situation.

ESC works by constantly comparing the driver’s intention with the vehicle’s actual behavior. The system does this by monitoring systems such as wheel speed, steering angle, yaw rate, lateral acceleration, throttle position, and brake application. A central microcomputer analyzes the collected data and triggers a response to keep the vehicle on course when an unstable condition is detected.

The roll stability control system automatically reduces engine power, applies the engine brake, and/or applies the brakes when the acceleration sensor detects that the vehicle is at risk of rolling over. The control can intervene even before an advisory message is displayed.

When the system detects that the vehicle is at risk of oversteering or understeering, it applies individual wheel end brakes, activates the engine brake (if equipped), and/or cuts engine power, depending on the severity. As a result, the driver has full control over the vehicle until the system detects a potential risk and intervenes accordingly. ESC operates automatically; the driver does not monitor or activate the system.

Engine Brake

Each engine manufacturer uses a specific engine brake for their engine. Regardless of the manufacturer, the engine brake is operated with the principles outlined in here. Refer to the engine manufacturer’s operation manual for details of their particular engine brake product.
To avoid injury from loss of vehicle control, do not activate the engine brake system under the following conditions:

- on wet or slippery pavement, unless the vehicle is equipped with antilock braking system (ABS) and you have had prior experience driving under these conditions;
- if the drive wheels begin to lock, or there is fishtail motion after the engine brake is activated.

NOTE: When the engine brake is enabled, the engine brake lamp illuminates in the instrument panel.

Whenever vehicle braking is required on good road conditions, the engine brake may be used in conjunction with the service brakes. There is no time limit for operation of the engine brake. However, an engine brake does not provide the precise control of, and is not a substitute for, service brakes.

Usage of the engine brake as the primary braking system can cause unpredictable stopping distances, that could result in personal injury or property damage. Service brakes are the primary vehicle braking system.

Since the engine brake is most effective at rated engine speed, gear selection is very important. Gearing down the vehicle within the limits of the rated engine speed makes the engine brake more effective.

"Control speed" is the speed at which the engine brake performs 100 percent of the required downhill braking, resulting in a constant speed of descent. The control speed varies, depending on vehicle weight and the downhill grade.

For faster descent, select a higher gear than that used for control speed. Service brakes must then be used intermittently to prevent engine overspeed and to maintain desired vehicle speed.

For slower descent, select a lower gear, being careful not to overspeed the engine. Occasional deactivation of the engine brake may be necessary to maintain the designated road speed under these conditions.

If the engine is equipped with both cruise control and an engine brake, the engine brake can operate automatically while cruise control is activated. The maximum amount of braking is selected with the engine brake control. When the vehicle returns to the set cruise speed, the engine brake will turn off.

The engine brake will only operate when the accelerator pedal is fully released.

Vehicles equipped with ABS have the ability to turn the engine brake off if wheel slip is detected. The engine brake will automatically turn back on once wheel slip is no longer detected.

Engine Brake Operation

NOTICE

Do not allow the engine to exceed its governed speed, or serious engine damage could result.

NOTE: Depending on the brake type, the engine brake may be disabled when engine temperature falls below a set level.

IMPORTANT: On some vehicles, the engine brake only has off and high intensity options.

The engine brake control is located on the right-hand steering column lever. At the top position, the engine brake is off, and at the three lower positions, the engine brake is on and the intensity (low, medium, high) increases with each step down. See Fig. 9.3.

NOTE: The cruise control system and safety systems may activate the engine brake regardless of the lever position.
On some vehicles, the engine brake only has off and high intensity options.

0. Off
1. Low
2. Medium
3. High

Fig. 9.3, Engine Brake Positions, Right-Hand Steering Column Lever
Pre- and Post-Trip Checklists

Pretrip and Post-Trip General Information .. 10.1
Daily Pretrip Inspection and Maintenance Checklist 10.2
Weekly Post-Trip Inspection and Maintenance Checklist 10.3
Monthly Post-Trip Inspection and Maintenance Checklist 10.3
Pre- and Post-Trip General Information

Regulations in both Canada and the United States clearly indicate that it is the driver's responsibility to perform an inspection and ensure the complete roadworthiness of a vehicle before placing it into service for the day.

IMPORTANT: The pre- and post-trip checklists, and inspections and maintenance procedures detailed in this chapter, are not all-inclusive. Also refer to other component and body manufacturers' instructions for specific inspection and maintenance instructions.

Use the pretrip inspection checklist to ensure that vehicle components are in good working condition before each trip. Use the weekly and monthly post-trip inspection checklists to note any items that require attention before the next trip. A driver that is familiar with the vehicle, and drives it regularly, can perform the daily inspections, then add the weekly and monthly post-trip inspections as scheduled. If the driver does not operate the vehicle on a consistent basis, all three of the inspection procedures should be performed before the trip.

Pre- and post-trip inspections cannot be done quickly. However, careful inspections save time by eliminating stops later to adjust items overlooked or forgotten.

Numbers in parentheses within each of the checklists reference the corresponding detailed instructions found under "Daily (D), Weekly (W), or Monthly (M) Procedures" in Chapter 11.

If any system or component does not pass this inspection, it must be corrected before operating the vehicle. Whenever equipment requires adjustment, replacement, repair, addition of lubricants, or a change of lubricants, take the vehicle to an authorized Freightliner dealer for assistance.
Daily Pretrip Inspection and Maintenance Checklist

IMPORTANT: Before performing any of these checks, apply the parking brake and chock the tires.

Table 10.1, Daily Pretrip Inspection and Maintenance Checklist

<table>
<thead>
<tr>
<th>Procedure Performed (check off)</th>
<th>Daily Pretrip Inspections/Checks</th>
<th>Procedure Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____</td>
<td>Drain manually drained air reservoirs (that are not equipped with automatic drain valves)</td>
<td>D1</td>
</tr>
<tr>
<td>Check</td>
<td>surge tank coolant level</td>
<td>D2</td>
</tr>
<tr>
<td>Inspect</td>
<td>radiator and charge air cooler</td>
<td>D3</td>
</tr>
<tr>
<td>Check</td>
<td>engine for fuel, oil, or coolant leaks</td>
<td>D4</td>
</tr>
<tr>
<td>Check</td>
<td>intake-air restriction indicator and air intake system</td>
<td>D5</td>
</tr>
<tr>
<td>Check</td>
<td>engine oil level</td>
<td>D6</td>
</tr>
<tr>
<td>Check</td>
<td>automatic transmission fluid level, if equipped</td>
<td>D7</td>
</tr>
<tr>
<td>Check</td>
<td>fuel/water separator for contaminants and leaks, if equipped</td>
<td>D8</td>
</tr>
<tr>
<td>Check</td>
<td>fuel tank(s), fuel lines, and connections</td>
<td>D9</td>
</tr>
<tr>
<td>Check</td>
<td>fuel level</td>
<td>D10</td>
</tr>
<tr>
<td>Check</td>
<td>diesel engine fuel cap vent area is clean</td>
<td>D10</td>
</tr>
<tr>
<td>Check</td>
<td>front and rear suspension components</td>
<td>D11</td>
</tr>
<tr>
<td>Check</td>
<td>oil- and air-pressure warning systems</td>
<td>D12</td>
</tr>
<tr>
<td>Check</td>
<td>horn</td>
<td>D13</td>
</tr>
<tr>
<td>Check</td>
<td>backup alarm, if equipped</td>
<td>–</td>
</tr>
<tr>
<td>Check</td>
<td>headlights, mirrors, and window glass</td>
<td>D14</td>
</tr>
<tr>
<td>Check</td>
<td>air brake chambers and pushrods</td>
<td>D15</td>
</tr>
<tr>
<td>Check</td>
<td>slack adjusters</td>
<td>D16</td>
</tr>
<tr>
<td>Check</td>
<td>tire pressure</td>
<td>D17</td>
</tr>
<tr>
<td>Check</td>
<td>tire condition</td>
<td>D18</td>
</tr>
<tr>
<td>Check</td>
<td>rims and wheels</td>
<td>D19</td>
</tr>
<tr>
<td>Check</td>
<td>air brake system</td>
<td>D20</td>
</tr>
<tr>
<td>Check</td>
<td>parking brakes</td>
<td>D21</td>
</tr>
<tr>
<td>Inspect</td>
<td>frame rails (missing bolts), crossmembers (bent or loose)</td>
<td>–</td>
</tr>
<tr>
<td>Check</td>
<td>mud flaps (aren’t damaged, at least 10 inches above the ground, and brackets are secure)</td>
<td>–</td>
</tr>
<tr>
<td>Check</td>
<td>exhaust system (mounted securely, connected tightly, no signs of leaks such as soot trails)</td>
<td>–</td>
</tr>
<tr>
<td>Inspect</td>
<td>Bendix Hydro-Max® Power Booster</td>
<td>D22</td>
</tr>
<tr>
<td>Inspect</td>
<td>engine and chassis wiring</td>
<td>D23</td>
</tr>
<tr>
<td>_____</td>
<td>Remove chocks and test service brakes</td>
<td>D24</td>
</tr>
</tbody>
</table>

Inspector___ Date ________________

For the daily pretrip inspection and maintenance checklist see Table 10.1.
Weekly Post-Trip Inspection and Maintenance Checklist

IMPORTANT: Before performing any checks, apply the parking brake and chock the tires.

<table>
<thead>
<tr>
<th>Procedure Performed (check off)</th>
<th>Weekly Post-Trip Inspections/Checks</th>
<th>Procedure Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>Manually drain air reservoirs that are equipped with automatic drain valves</td>
<td></td>
</tr>
<tr>
<td>Inspect _______</td>
<td>batteries and battery cables</td>
<td>W1</td>
</tr>
<tr>
<td>Check _______</td>
<td>wheel bearing lubricant level</td>
<td>W2</td>
</tr>
<tr>
<td>Inspect _______</td>
<td>steering components</td>
<td>W3</td>
</tr>
<tr>
<td>Check _______</td>
<td>drive belts</td>
<td>W4</td>
</tr>
<tr>
<td>Check _______</td>
<td>drive belt tension</td>
<td>W5</td>
</tr>
<tr>
<td>Inspect _______</td>
<td>seat belts and tether belts</td>
<td></td>
</tr>
</tbody>
</table>

Inspector___ Date ________________

Table 10.2, Weekly Post-Trip Inspection and Maintenance Checklist

Monthly Post-Trip Inspection and Maintenance Checklist

IMPORTANT: Before performing any of these checks, apply the parking brake and chock the tires.

<table>
<thead>
<tr>
<th>Procedure Performed (check off)</th>
<th>Monthly Post-Trip Inspections/Checks</th>
<th>Procedure Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>Clean the battery terminals</td>
<td>M1</td>
</tr>
<tr>
<td>Inspect _______</td>
<td>radiator hoses and heater hoses</td>
<td>M2</td>
</tr>
<tr>
<td>Check _______</td>
<td>fluid level in the hydraulic clutch reservoir (if applicable, and if necessary, fill with DOT 4 brake fluid)</td>
<td></td>
</tr>
<tr>
<td>Check _______</td>
<td>fluid level in the hydraulic brake fluid reservoir, if equipped</td>
<td>M3</td>
</tr>
<tr>
<td>Check _______</td>
<td>steering wheel play</td>
<td>M4</td>
</tr>
<tr>
<td>Check _______</td>
<td>outer surfaces of the hood and body (for visible surface breaks and damage)</td>
<td></td>
</tr>
<tr>
<td>Inspect _______</td>
<td>brake lining wear</td>
<td>M5</td>
</tr>
<tr>
<td>Inspect _______</td>
<td>driveshaft</td>
<td></td>
</tr>
</tbody>
</table>

Inspector___ Date ________________

Table 10.3, Monthly Post-Trip Inspection and Maintenance Checklist
11

Pre- and Post-Trip Inspections and Maintenance

Safety Precautions ... 11.1
Daily Pretrip Inspection and Maintenance Procedures 11.1
Weekly Post-Trip Inspection and Maintenance Procedures 11.9
Monthly Post-Trip Inspection and Maintenance Procedures 11.10
Safety Precautions

DANGER

When working on the vehicle, shut down the engine, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle can not drop. Failure to follow these steps could result in serious personal injury or death.

Daily Pretrip Inspection and Maintenance Procedures

Whenever equipment requires adjustment, replacement, repair, addition of lubricants, or a change of lubricants, see the Shuttle Bus Chassis Workshop Manual for repair procedures and specifications. Specific references to the manual will be found where appropriate.

1. Drain manually drained air reservoirs (that are not equipped with automatic drain valves).

Water and oil normally enter the air reservoir in the form of vapor because of the heat generated during compression. After the water and oil condense, drain the resulting emulsion as follows:

1.1 Open the wet tank valve. The drain cock or pull chain drain is located on the forward end of the supply air reservoir, which is connected directly to the air compressor. Block the valve open.

WARNING

When draining the air reservoir, do not look into the air jets or direct them toward anyone. Dirt or sludge particles may be in the airstream and could cause injury.

1.2 Exhaust the remaining air and moisture from the system by opening the drain cocks on the bottoms of the remaining air reservoirs. Block the valves open.

1.3 Water and oil emulsion often form pockets that will not drain while compressed air is in the reservoirs. Because of these pockets, leave the valves blocked open during the first part of the pretrip inspection.

2. Check the coolant level in the surge tank.

See Fig. 11.1. If the coolant is low, add a 50/50 mixture of water and antifreeze. Fill the surge tank to the MAX line when the tank is cool. Refer to the engine manufacturer’s service literature for approved coolant. If the surge tank was empty, start the engine after refilling, then check the level again when the engine is at operating temperature.

NOTICE

Coolant must be filled to the full line of the surge tank. Low coolant could result in engine overheating, which could cause engine damage.

3. Inspect the radiator and charge air cooler.

3.1 Inspect the radiator and charge air cooler for clogged fins. Use compressed air or water directed from the fan side of the core to backflush any material restricting airflow.

3.2 Inspect the radiator and charge air cooler for damage and accumulated debris. Straighten bent or damaged fins to permit airflow across all areas of the cores.

NOTE: When traveling through areas of high insect concentration, it may be necessary to clean the exterior of the radiator or the charge air cooler core as often as every 200 miles (320 km).

3.3 Also inspect and clean the condenser. If clogged, the condenser can restrict airflow through the radiator.

Fig. 11.1, Surge Tank Fill Cap

05/31/2007 1200705
3.4 Check the radiator for leaks. If leaks are found, have the radiator repaired or replaced. Take the vehicle to an authorized Freightliner Custom Chassis dealer for assistance.

4. Inspect the engine for fuel, oil, and coolant leaks. Correct any leaks found.

5. Inspect the air intake system for leaks or damage.

NOTICE

Failure to maintain a sealed air intake system could allow entry of dirt and contaminants into the engine. This could adversely affect engine performance and result in engine damage.

5.1 Check the intake-air restriction indicator.

5.2 If the yellow signal stays locked in the red zone once the engine is shut down, or is at or above the maximum restriction value shown in Table 11.1, the air cleaner element needs to be replaced. See Group 09 of the Shuttle Bus Chassis Workshop Manual for filter element replacement instructions, or take the vehicle to an authorized Freightliner dealer. See Fig. 11.2.

<table>
<thead>
<tr>
<th>Engine Make</th>
<th>Pre-EPA07 Engines</th>
<th>EPA07 and EPA10 Engines</th>
<th>GHG14, GHG17, and GHG21 Engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cummins</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Detroit</td>
<td>20</td>
<td>22</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 11.1, Air Intake Maximum Restriction Values

NOTE: After replacing the filter element, reset the restriction indicator by pressing the rubber reset button.

5.3 Inspect the secondary or safety filter element in the air cleaner when replacing the primary element, and replace it when clogged or dirty. This element should be replaced with every third primary element replacement.

5.4 Check the engine air intake piping from the air cleaner to the engine intake. Inspect the piping for loose connections,

6. Check the engine oil level.

NOTICE

Operating the engine with the oil level below the minimum fill (or “add”) mark or above the maximum fill (or “full”) mark could result in engine damage.

6.1 Park the vehicle on a level surface. Allow several minutes for the oil to drain back into the oil pan to ensure an accurate reading.

NOTE: Follow the engine manufacturer’s guidelines for engine shutdown time requirements prior to checking the oil level.
6.2 Pull out the dipstick and clean it with a paper towel or cloth, then push the dipstick back in all the way. Remove it again, keeping the tip down, and check the oil level.

6.3 If the oil is below the cross-hatched area, or the add mark, at the tip of the dipstick, add at least one quart (liter) of the recommended oil. See Fig. 11.3.

For diesel engines that comply with EPA07 or newer regulations, use CJ-4 engine oil with less than 1% sulfated ash.

NOTICE

Failure to use the recommended oil can result in engine or aftertreatment component damage and will void the warranty.

7. Check the oil level in the automatic transmission.

NOTE: The fluid must be warm to ensure an accurate check. The fluid level rises as temperature increases.

With the vehicle on a level surface, check the oil level in the transmission using one of the following procedures:

Hot Check

- Operate the transmission in a Drive (D) range until normal operating temperature, 160 to 200°F (71 to 93°C), is reached.
- Park the vehicle. Shift to Neutral (N) and apply the parking brake. Let the engine run at idle.
- Wipe the dipstick clean and check the fluid level. A safe operating level is any level within the HOT-run (upper) band on the dipstick. See Fig. 11.4.
- If the fluid is not within this range, add or drain fluid as needed to bring the level to the top of the HOT-run band. See the Shuttle Bus Chassis Maintenance Manual for fluid types and capacities.

Cold Check

- A cold check may be made when the sump temperature is 60 to 104°F (15 to 40°C).
- Run the engine for at least one minute to clear the fluid system of air.
- With the engine running, wipe the dipstick clean and check the fluid level. See Fig. 11.4. Any level within the COLD-run (lower) band is satisfactory for operating the vehicle. If the level is not within the COLD-run band, add or drain fluid until it reaches the middle of the COLD-run band.
- Perform a hot check at the first opportunity after normal operating temperature, 160 to 200°F (71 to 93°C), is reached.

8. Check the fuel/water separator for contaminants and leaks.

Drain any water found. Place a suitable container under the fuel/water separator. Check the water level in the sight bowl, if equipped. To drain the water, loosen the valve at the bottom and allow the water to run out. Close and tighten the valve finger-tight.

IMPORTANT: When draining fluid from a fuel/water separator, drain the fluid into an appropriate container and dispose of it properly. Many states now issue fines for draining fuel/water separators on the ground. On all types of separators, stop draining fluid when you see fuel come out of the separator drain valve.

9. Inspect the fuel tanks, fuel lines, and connections for leaks.
On vehicles equipped with a compressed natural gas (CNG) engine, inspect the fuel tanks, fuel regulators, fuel filters, and the fuel lines. Use a natural gas detector to check for any leaks, or spray the components with a soap-and-water solution and check for bubbles.

9.1 Check that the fuel tanks are secured to their mounting brackets and that the mounting brackets are secured to the frame.

9.2 Replace leaking fuel tanks.

9.3 If lines or connections are leaking, have them repaired or replaced.

For repair and/or replacement procedures, see Group 47 of the Shuttle Bus Chassis Workshop Manual, or take the vehicle to an authorized Freightliner Custom Chassis dealer.

9.4 If equipped with fuel tank shutoff valves, be sure the valves are fully open.

WARNING

Never operate the engine with the fuel tank shut-off valves partly closed. This could damage the fuel pump, causing sudden loss of engine power, possibly resulting in serious personal injury due to reduced vehicle control.

10. Check the fuel level in the fuel tank(s).

Check that the fuel cap vent area is clean.

Check the fuel/water separator (if so equipped) for leaks and, if needed, prime the fuel tank system.

WARNING

Never fill fuel tanks to more than 95 percent of their liquid capacity. This could make them more likely to rupture from impact, possibly causing fire and resulting in serious personal injury or death by burning.

IMPORTANT: Use only ultralow-sulfur diesel (ULSD) fuel with 15 ppm sulfur content or less, based on ASTM D2622 test procedure. Failure to use ultralow-sulfur diesel fuels may void the warranty on emissions components.

10.1 To keep condensation to a minimum, fill diesel fuel tanks at the end of each day, but not to more than 95 percent of liquid capacity. Select the proper grade of fuel, as specified by the engine manufacturer.

WARNING

Do not mix gasoline or alcohol with diesel fuel. This mixture could cause an explosion, possibly resulting in serious personal injury or death. Do not fill the fuel tanks in the presence of sparks, open flames, or intense heat. These could ignite the fuel, possibly causing severe burns.

10.2 Always strain or filter diesel fuel before putting it into the tanks. This will lengthen the life of the engine fuel filter and reduce the chances of dirt entering the engine.

11. Inspect the front and rear suspension components, including springs, spring hangers, shocks, and suspension brackets.

11.1 Check for broken spring leaves, loose U-bolts, cracks in the suspension brackets, and loose fasteners in the spring hangers and shackles.

11.2 Inspect the shock absorbers for loose fasteners and leaks.

11.3 Tighten all loose fasteners and have any components replaced that are worn, cracked, or otherwise damaged.

11.4 On vehicles with air suspensions, check for leaks. Check air suspension components for cuts and bulges.

WARNING

Do not replace individual leaves of a damaged front or rear suspension leaf spring assembly; replace the complete spring assembly. Visible damage, such as cracks or breaks, to one leaf causes hidden damage to other leaves. Replacement of only the visibly damaged part(s) is no assurance that the spring is safe. If cracks or breaks exist on front spring assemblies in either of the two top leaves, a loss of vehicle control could occur. Failure to replace a damaged spring assembly could cause an accident resulting in serious personal injury or property damage.

12. Check the oil- and air-pressure warning systems.
When the engine is started, oil- and air-pressure warnings will come on until the oil and air pressure rise above a preset minimum. After starting the engine, make sure the oil- and air-pressure warning systems are operating and that the buzzer stops sounding when the preset minimum is reached.

12.1 If the warning systems do not come on when the ignition is turned on, have the systems repaired.

12.2 If the air pressure in both systems is above the preset minimum when the engine is started, test the low air pressure system by lowering the pressure to below this range, or until the warning system comes on.

NOTE: The air pressure in both the primary and secondary air reservoir systems must be above 65 psi (448 kPa) on most vehicles.

13. Make sure that the electric horn works.

If a horn is not working, have it replaced before trip departure.

14. Make sure all the exterior lights are working.

Check the high and low beams of the headlights. Clean the windshield, side, and rear windows (if equipped) with a long-handled or telescoping window cleaning device and standard cleaning solutions. Stand only on the ground, on a step-ladder, or an elevated walkway. The vehicle entry/exit steps and handholds are not designed for this purpose. The tires, fenders, engine, and other under-hood components do not have adequate gripping surfaces and handholds.

DANGER

Do not loosen or remove the parking brake clamp ring for any purpose. See Fig. 11.5. The parking/emergency brake section of the brake chamber is not intended to be serviced. Serious injury or death may result from sudden release of the power spring.

Before doing any repairs or adjustments on a service/parking brake chamber, read the applicable warnings and instructions in Group 42 of the Shuttle Bus Chassis Workshop Manual.

15. Inspect the air brake chamber and the air brake chamber pushrods. See Fig. 11.5.

16. Inspect the slack adjusters.

Fig. 11.5, Parking Brake Chamber Clamp

16.1 Meritor Slack Adjusters: Check the boot for cuts, tears, or other damage. Have it replaced if necessary.

16.2 Inspect the slack adjuster boot for cuts or tears. If the boot is damaged, have it replaced. See Fig. 11.6.

17. Check tire inflation pressures using an accurate tire pressure gauge.

Tires should be checked when cool. For inflation pressures and maximum loads (per tire) see the tire manufacturer’s guidelines.

17.1 Be sure valve stem caps are on every tire and that they are screwed on finger-tight.

17.2 Inflate the tires to the applicable pressures if needed.

17.3 If a tire has been run flat or underinflated, check for possible wheel or tire damage before adding air.

Moisture inside a tire can result in body ply separation or a sidewall rupture. During tire inflation, compressed air reservoirs and lines must be kept dry. Use well maintained inline moisture traps and service them regularly.
WARNING

Do not operate the vehicle with underinflated or overinflated tires. Incorrect inflation can stress the tires and make the tires and wheels susceptible to damage, possibly leading to wheel or tire failure and loss of vehicle control, resulting in serious personal injury or death.

IMPORTANT: The load and cold inflation pressure must not exceed the wheel manufacturer’s recommendations, even though the tire may be approved for a higher load inflation. Some wheels are stamped with a maximum load and maximum cold inflation rating. If they are not stamped, consult the wheel manufacturer for the correct tire inflation pressure for the vehicle load. If the load exceeds the maximum wheel capacity, the load must be adjusted or reduced.

IMPORTANT: Low-rolling resistance (LRR) tires minimize wasted energy as a tire rolls, thereby decreasing rolling effort and improving fuel efficiency. If tire replacement is necessary, replacement tires must meet or exceed the rolling resistance of the originally installed tires in order to maintain compliance with greenhouse gas and fuel efficiency regulations.

Contact your tire manufacturer/supplier to determine the rolling resistance of the originally installed tires. Visit www.epa.gov/smartway for additional information and resources.

18. Inspect each tire for wear, bulges, cracks, cuts, penetrations, and oil contamination. A weekly pressure loss of 4 psi (28 kPa) or more in a tire may indicate damage. The tire should be inspected and if necessary, repaired or replaced.

18.1 Check the tire tread depth. If tread is less than 4/32 inch (3 mm) on any front tire, or less than 2/32 inch (1.5 mm) on any rear tire, replace the tire.

18.2 Inspect each tire for bulges, cracks, cuts, and penetrations.

18.3 Inspect each tire for oil contamination. Fuel, oil, gasoline, and other petroleum derivatives, if allowed to contact the tires, will soften the rubber and destroy the tire.

19. Check the wheel nuts for indications of looseness. Examine each wheel component.

19.1 Remove all dirt and foreign material from the assembly. Dirt or rust streaks from the stud holes, metal buildup around stud holes, or out-of-round or worn stud holes may be caused by loose wheel nuts. See Fig. 11.7 and Fig. 11.8.

Fig. 11.6, Automatic Slack Adjuster (typical)

Fig. 11.7, Dirt and Rust Streaks from the Stud Holes

11.6
See Group 33 or Group 35 of the Shuttle Bus Chassis Workshop Manual for service procedures on the studs and hubs, and see Group 40 in the same manual for wheel and tire servicing, or take the vehicle to an authorized Freightliner Custom Chassis dealer.

WARNING

Have any worn or damaged wheel components replaced by a qualified person using the wheel manufacturer’s instructions and the wheel industry’s standard safety precautions and equipment. Otherwise a vehicle or workshop accident could occur, possibly resulting in serious personal injury or death.

19.3 Make sure all wheel nuts are tightened 450 to 500 lbf·ft (610 to 678 N·m) for Accuride wheels with unlubricated threads. Use the tightening pattern in Fig. 11.9 for 10-hole wheels and Fig. 11.10 for 8-hole wheels. See Group 40 of the Shuttle Bus Chassis Workshop Manual.

NOTICE

Insufficient wheel nut torque can cause wheel shimmy, resulting in wheel damage, stud breakage, and extreme tire tread wear. Excessive wheel nut torque can break studs, damage threads, and crack discs in the stud hole area. Use the recommended torque values and follow the proper tightening sequence.
NOTE: Vehicles operating under severe or adverse conditions should be checked more frequently.

20. Check the air brake system for proper operation.

20.1 Check the air governor cut-in and cut-out pressures as follows:
Run the engine at fast idle. The air governor should cut out the air compressor at approximately 120 psi (827 kPa). With the engine idling, apply the brake pedal several times. The air governor should cut in the air compressor at approximately 100 psi (689 kPa). If the air governor does not cut in and out as described above, it must be adjusted to these specifications. If the air governor cannot be adjusted or repaired, replace it before operating the vehicle.

20.2 Check the air pressure buildup times as follows:
With the air system fully charged to 120 psi (827 kPa), make one full brake application and note the air pressure reading on the gauge. Continue to reduce the air pressure by moderate brake applications to a maximum of 90 psi (620 kPa), then run the engine at governed rpm. If the time required to raise the air pressure to 120 psi (827 kPa) (from the pressure noted after one brake application) is more than 30 seconds, eliminate any leaks or replace the air compressor before operating the vehicle.

20.3 Check the air pressure reserve as follows:
With the air system fully charged to 120 psi (827 kPa), stop the engine and note the air pressure. Then make one full brake application and observe the pressure drop. If it drops more than 25 psi (172 kPa), all areas of leakage must be eliminated before operating the vehicle.

20.4 Check the air leakage in the system as follows:
With the parking brake (spring brake) applied, the transmission out of gear, and the tires chocked, charge the air system until cut-out pressure of 120 psi (827 kPa) is reached.

With the service brakes released, shut down the engine, wait 1 minute and note the air pressure gauge reading. Observe the air pressure drop in psi (kPa) per minute.
Charge the air system until cut-out pressure of 120 psi (827 kPa) is reached. With the parking brakes released and the service brake applied, shut down the engine, wait 1 minute and note the air pressure gauge reading. Observe the air pressure drop in psi (kPa) per minute.

If leakage exceeds the limits shown in Table 11.2, repair all areas of leakage before driving the vehicle.

<table>
<thead>
<tr>
<th>Maximum Allowable Service Brake Leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brakes Released</td>
</tr>
<tr>
<td>2 psi/min. (14 kPa)</td>
</tr>
</tbody>
</table>

Table 11.2, Maximum Allowable Service Brake Leakage

21. Test the parking brake on a 20 percent grade.
Apply the hand brake with the vehicle on a 20 percent grade (or as steep a grade that the vehicle may normally be parked on). The ramp surface should be made of Portland cement or equivalent. If the parking brake does not hold the vehicle, repair the parking brake system.

22. Inspect the operation of the Hydro-Max® brake booster, as follows.

22.1 With the engine off, depress the brake pedal; the warning light and buzzer should come on, and the electric motor should run.

22.2 Start the engine and allow the gauges to sweep. Depress the brake pedal; no warning lights, buzzer, or electric motor should come on.

23. Inspect the engine and chassis wiring.
Check for loose wiring, chafed insulation, and damaged or loose hold-down clamps. Tighten loose wires or hold-down clamps; replace damaged wiring or clamps.

24. Test the service brakes.
When starting to move the vehicle and before picking up speed, test the brakes with the foot pedal and parking brake control valve (yellow
knob) to be sure they will bring the vehicle to a safe stop.

Weekly Post-Trip Inspection and Maintenance Procedures

1. *Inspect the batteries and battery cables.*

 WARNING

 Battery posts, terminals, and related accessories contain lead and lead compounds, chemicals known to the State of California to cause cancer and reproductive harm. To prevent possible personal injury, always wash your hands after handling battery parts and related accessories.

 1.1 Check the battery cables for chafing and proper routing. Be sure the battery hold-down is secure. If it is loose, tighten the hold-down bolts; if it is damaged, replace it. Replace the battery cable if damaged.

 1.2 If the battery is equipped with a built-in hydrometer, examine the hydrometer. If a green dot shows in the sight glass, the battery is sufficiently charged.

 If the sight glass is dark, the charge is low and the battery must be recharged.

 If the sight glass is clear, the battery has a low level of electrolyte and must be replaced.

2. **Check the level of the wheel bearing lubricant in the hub cap at each end of the front axle.**

 If needed, fill the hubs to the level indicated on the hub cap. See *Chapter 14*, for recommended lubricants.

 IMPORTANT: Before removing the fill plug, always clean the hub cap and plug.

3. **Examine the steering components.**

 See *Fig. 11.11*. If repairs are needed, see *Group 46* of the *Shuttle Bus Chassis Workshop Manual* for instructions, or take the vehicle to an authorized Freightliner Custom Chassis dealer.

 3.1 Check the mounting bolts and pitman arm nut, for tightness.

 3.2 Check the drag link nuts for missing cotter pins.

4. **Check the condition of the drive belts.**

 Check the fan belt(s), alternator belt, and refrigerant compressor belt for signs of glazing, wear (frayed edges), damage (breaks or cracks), or oil contamination. If a belt is glazed, worn, damaged, or oil soaked, replace the belt, following the instructions in *Group 01* of the *Shuttle Bus Chassis Workshop Manual*.

5. **Check the drive belt for proper tension.** Use your index finger to apply approximately 25 pounds (11 kg) of force at the center of the belt free-span. See *Fig. 11.12*. Deflection should be one belt thickness per 1 foot (300 mm) of belt free-span. If the tension is more than or less than this value, measure it with a belt-tension gauge and adjust it to the proper tension. See *Group 01* of the *Shuttle Bus Chassis Workshop Manual* for instructions.

 NOTE: On Cummins engines, a belt tensioner automatically adjusts the fan and alternator belt.
to correct tension. If the belt slips, repair or replace the tensioner. For instructions, see the Cummins Engine Operation and Maintenance Manual.

Monthly Post-Trip Inspection and Maintenance Procedures

WARNING

Battery posts, terminals, and related accessories contain lead and lead compounds, chemicals known to the State of California to cause cancer and reproductive harm. To prevent possible personal injury, always wash your hands after handling battery parts and related accessories.

1. Clean the batteries.
 1.1 Remove any corrosion from the hold-down and the top of the battery.

NOTICE

Take care to keep the vent plugs tight so that the neutralizing solution does not enter any of the battery cells and damage the battery.

1.2 Use a soda solution to neutralize the acid present, then rinse off the soda solution with clean water.

1.3 If the battery posts or cable terminals are corroded, disconnect the terminals from the posts. Clean them with a soda solution and a wire brush. After cleaning, connect the terminals to the battery posts, then apply a thin coat of petroleum jelly to the posts and terminals to help retard corrosion.

2. Inspect the radiator and heater hoses, including the clamps and support brackets.
 2.1 Make sure the radiator inlet and outlet hoses are pliable and are not cracking, weakening, or ballooning.
 2.2 Make sure the heater hoses are pliable and are not cracking or ballooning. Replace hoses that show signs of cracking, weakening, or ballooning.
 2.3 Tighten hose clamps as necessary, but do not overtighten, as hose life can be adversely affected.
 2.4 Be sure the hose support brackets are securely fastened. Make sure the hoses are not located near sources of wear, abrasion, or high heat.

IMPORTANT: Replace all hoses, including heater hoses, at the same time. Service-type knitted or braided yarn-reinforced neoprene hose is acceptable. Silicone hoses having an extended service life can be substituted for the reinforced neoprene type. See the Freightliner Service Parts Catalog or contact your Freightliner Dealer.

3. Check the fluid level in the hydraulic brake fluid reservoir, if so equipped.
 If needed, fill the reservoir to the bottom of the fill-neck with DOT 3 heavy-duty brake fluid. See Fig. 11.13.

4. Check the steering wheel for excessive play.
 With the front tires pointing straight ahead, turn the steering wheel until motion is observed at the front wheels. Align a reference mark on a ruler, then slowly turn the steering wheel in the opposite direction until motion is again detected at the wheels. Measure the lash (free play) at the rim of the steering wheel. See Fig. 11.14.

Excessive lash exists if steering wheel movement exceeds 4-3/4 inches (121 mm) with an 18-inch (470 mm) steering wheel. If there is excessive lash, check the steering system for wear or incorrect adjustment of the linkage and steering gear before operating the vehicle.

5. Check the brake lining wear on vehicles equipped with air brakes. Proper brake operation is dependent on periodic maintenance and inspection of the brake linings.
5.1 Apply the parking brakes, and chock the tires to prevent vehicle movement.

5.2 If the axle assembly is not equipped with a dust shield or backing plate, measure the axle brake lining thickness. If any of the brake linings are worn to less than 3/16 inch (4.8 mm) at the thinnest point, replace the linings on all brake assemblies on that axle. See Group 42 of the Shuttle Bus Chassis Workshop Manual for lining replacement instructions and camshaft end play inspection.

5.3 If the axle assembly is equipped with a dust shield or backing plate, remove the inspection plugs to inspect the brake lining thickness. If any of the brake linings are worn to less than approximately 3/16 inch (4.8 mm) at the thinnest point, replace the linings on all brake assemblies on that axle. See Group 42 of the Shuttle Bus Chassis Workshop Manual for lining replacement instructions and camshaft end play inspection.

5.4 Install the inspection plugs in the dust shields or backing plates, if so equipped.

5.5 Remove the chocks from the tires.

5.1 Apply the parking brakes, and chock the tires to prevent vehicle movement.
Cleaning and Care

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washing and Polishing</td>
<td>12.1</td>
</tr>
<tr>
<td>Care of Fiberglass Parts</td>
<td>12.1</td>
</tr>
<tr>
<td>Care of Chrome Parts</td>
<td>12.1</td>
</tr>
<tr>
<td>Dashboard and Instrument Panel Care</td>
<td>12.1</td>
</tr>
</tbody>
</table>
Washing and Polishing

To protect the finish of your new vehicle, follow these guidelines carefully:

- During the first 30 days, rinse your vehicle frequently with water. If the vehicle is dirty, use a mild liquid soap. Do not use detergent.
- During the first 30 days, do not use anything abrasive on your vehicle. Brushes, chemicals, and cleaners may scratch the finish.
- During the first 120 days, do not wax your vehicle.

To extend the life of your vehicle’s finish, follow these guidelines:

- Avoid washing your vehicle in the hot sun. Always use water. After the vehicle is completely washed, dry it with a towel or chamois.
- Do not dust painted surfaces with a dry cloth, as this will scratch the paint.
- Do not remove ice or snow from a painted surface with a scraper of any sort.
- To prevent damage to the finish, wax it regularly. If the finish has become dull, before waxing, remove oxidized paint using a cleaner specifically designed for this purpose. Remove all road tar and tree sap before waxing. Freightliner Custom Chassis recommends that a quality brand of cleaner or cleaner-polish and polishing wax be used.
- Rinse the undercarriage regularly during the winter months to protect it from mud and road salt corrosion.
- Do not let diesel fuel or antifreeze stand on a painted surface. If either should occur, rinse the surface off with water.
- To prevent corrosion, have any nicks or other damage on the finish touched up as soon as possible.
- Park your vehicle in a sheltered area whenever possible.

Care of Fiberglass Parts

Wash unpainted fiberglass air fairings and shields monthly with a mild detergent, such as dishwashing liquid. Avoid strong alkaline cleansers.

Apply a wax specifically designed for fiberglass.

Care of Chrome Parts

To prevent rust, keep chrome parts clean and protected at all times. This is especially important during winter driving and in coastal areas where there is exposure to salt air.

When cleaning chrome parts, use clean water and a soft cloth or sponge. A mild detergent may also be used.

Sponge gently, then rinse. If necessary, use a non-abrasive chrome cleaner to remove stubborn rust or other material. Do not use steel wool.

To help protect the chrome after cleaning, apply a coat of polishing wax to the surface. Never use wax on parts that are exposed to high heat, such as exhaust pipes.

Dashboard and Instrument Panel Care

NOTICE

When cleaning the dashboard, instrument panel, or gauge lens covers, do not use Armor-All Protectant®, STP Son-of-a-Gun®, window cleaner, or other equivalent treatments. These cleaners contain vinyl plasticizers which can cause stress crazing in the interior plastic panels and can result in cracking of the panels. Some cleaners can also have an adverse effect on the clear plastic of instrument panels and gauge lens covers, resulting in a foggy or cloudy appearance. This type of damage is not covered by vehicle warranty.

To clean the dashboard, instrument panel, and gauge lens covers, use a cloth dampened with warm soapy water. Make certain to wring the cloth out well before cleaning, as excess water will damage the electrical components.
In an Emergency

Hazard Warning Lights .. 13.1
Emergency Starting With Jumper Cables ... 13.1
Changing a Flat Tire .. 13.3
Running Out of Fuel .. 13.3
Raising and Lowering a Vehicle .. 13.4
Hazard Warning Lights

To activate the hazard warning lights, push the hazard warning light switch on the right side of the steering column. See Fig. 13.1. When the hazard warning lights are activated, all of the turn signal lights and both of the turn signal indicator lights on the instrument panel will flash.

To cancel the warning lights, push the switch in on the right side of the steering column.

Emergency Starting With Jumper Cables

When using jumper cables, follow the instructions below.

WARNING

Batteries release explosive gas. Do not smoke when working around batteries. Put out all flames and remove all sources of sparks or intense heat in the vicinity of the battery. Do not allow the vehicles to touch each other. Do not lean over the batteries when making connections, and keep all other persons away from the batteries. Failure to follow these precautions could lead to severe personal injury as a result of an explosion or acid burns.

NOTICE

Make sure that both starting systems are the same voltage. Electronic devices on both vehicles can be damaged when connected to a vehicle with a different operating voltage.

1. Apply the parking brakes and turn off all lights and other electrical devices.

IMPORTANT: Do not attempt to jump start a damaged battery.

2. Access the batteries. If equipped with a battery tray, slide the tray out.

NOTICE

Always connect the batteries and jumper cables correctly (positive-to-positive and negative-to-negative). Connecting a charging device backwards (positive-to-negative) can severely damage the vehicle electrical content and cause non-warrantable failures.

3. Connect the positive (+) jumper cable to the positive terminal on the discharged battery. See Fig. 13.2.

4. Connect the other end of the positive jumper cable to the positive terminal on the booster battery providing the charge.

WARNING

Do the next step exactly as instructed and do not allow the clamps of one cable to touch the clamps of the other cable. Otherwise, a spark could occur near a battery, possibly resulting in severe personal injury from explosion or acid burns.

5. Connect the negative (-) jumper cable to the negative terminal on the booster battery.

6. Connect the other end of the negative jumper cable to the negative ground stud on the vehicle requiring the jump start.

7. Start the engine of the vehicle providing the jump start and let the engine run for a few minutes to charge the batteries of the other vehicle.

NOTICE

Do not crank the engine for more than 30 seconds at a time during any of the following procedures. Wait two minutes after each try to allow the starter to cool. Failure to do so could cause starter damage.
8. Attempt to start the engine of the vehicle with the batteries receiving the charge.

9. When the engine starts, let it idle for a few minutes.

WARNING

Do the next step exactly as instructed and do not allow the clamps of one cable to touch the clamps of the other cable. Otherwise, a spark could occur near a battery, possibly resulting in severe personal injury from explosion or acid burns.

10. Disconnect the negative jumper cable from the negative cable stud on the jump started vehicle.

11. Disconnect the negative jumper cable from the booster battery.

12. Disconnect the positive cable from the booster battery.

13. Disconnect the other end of the positive jumper cable from the jump started vehicle.
14. If equipped with a battery tray, slide the tray back into position and close the battery door.

Changing a Flat Tire

DANGER

When working on the vehicle, shut down the engine, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle can not drop. Failure to follow these steps could result in serious personal injury or death.

WARNING

Wheel lug nut torque is very high and the wheel/tire assemblies are very heavy. Changing a tire could result in back injury. If possible, call a qualified service facility to change a flat tire.

IMPORTANT: If a flat tire occurs while driving, gradually decrease vehicle speed. Holding the steering wheel firmly, move the vehicle to a safe location as quickly as possible.

1. If possible, stop the vehicle on a level surface, away from traffic.
2. Set the parking brake, and turn the ignition switch to the OFF position.
3. Turn on the hazard warning lights.
4. Remove the spare wheel, jack, jack handle, and lug wrench from storage, if so equipped.
5. Block the wheel diagonally opposite the wheel being changed.

WARNING

This vehicle is very heavy. Jacking the vehicle should be done with extreme caution. The vehicle could slip, causing personal injury or death.

NOTE: The jacking point for the front and rear wheels is directly under the axle. See Fig. 13.3.

6. Place the jack on a solid surface. Insert the jack handle and pump the handle to slightly raise the vehicle. Do not raise the wheel off of the ground. Loosen the wheel lug nuts, but do not remove them.

7. Raise the vehicle until the wheel is off of the ground. Remove the lug nuts and the wheel.
8. Install the spare wheel and the lug nuts.
9. In a star pattern, tighten the nuts evenly until snug.
10. Lower the vehicle until the wheel touches the ground. Tighten the nuts in the same pattern 450 to 500 lbf-ft (610 to 678 N·m).
11. Finish lowering the vehicle to the ground, then remove the jack.
12. Remove the block, then stow the jack, jack handle, and lug wrench.
13. After operating the vehicle for 50 to 100 miles (80 to 161 km), retighten the nuts 450 to 500 lbf-ft (610 to 678 N·m).

Running Out of Fuel

Diesel Engines

WARNING

Diesel fuel is flammable. When you approach a vehicle and the smell of diesel fuel is present, immediately shut off all engines and ignition sources. Avoid causing sparks and stay away from arcing switches and equipment. Extinguish cigarettes, pilot lights, flames, or other sources of ignition in the area and adjacent areas. Immediately provide extra ventilation to the area. Do not start the vehicle or any other type of equipment until the fuel leak is corrected and the area cleared of fuel. Failure to perform these actions could lead to the ignition of the fuel, which could cause personal injury or death, or severe property damage.

If the vehicle runs out of fuel, try to stop the vehicle on a level location away from traffic. Add at least 2 gallons (8 liters) of fuel to the fuel tank in order to restart the engine. If the vehicle is not level, up to four gallons (16 liters) of fuel may be required. Prolonged engine cranking may be required to pump fuel from the fuel tank to the engine before the engine will start.

NOTICE

Do not crank the engine for more than 30 seconds at a time. Wait two minutes after each try to...
allow the starter to cool. Failure to do so could cause starter damage.
If the vehicle will not start by cranking the engine, the fuel system may need to be primed. See the engine manufacturer’s operation and maintenance manual.

Raising and Lowering a Vehicle

Raising a Vehicle with Air Suspension

1. Park the vehicle on a level surface, set the parking brakes, and shut down the engine. Chock the tires.

WARNING

Remove the air from the suspension. Failure to remove the air from the suspension may cause the vehicle to move or shift on the jack stands as air pressure drains from the system; this could cause the vehicle to fall, resulting in damage to the vehicle, serious injury, or death.

2. Exhaust all air from the air suspension.

WARNING

Do not use bottle jacks to raise the vehicle. Always use floor jacks. Bottle jacks can slip, allowing the vehicle to fall, which could result in damage to the vehicle, serious injury, or death.

IMPORTANT: Only lift unloaded vehicles and vehicles disconnected from trailers. Unload vehicles with bodies (drilling rigs, mixers) as much as possible.

3. Place a floor jack under the axle housing, the clamp group, or the frame rail.

NOTICE

NOTICE: Do not place jack stands under any of the suspension components; doing so could cause suspension component damage. Jack stands can be placed at any point below the axle, including the differential area.

4. Raise the vehicle. Add additional jack stands, as needed, under the axles to support the vehicle.
Lowering a Vehicle with Air Suspension

WARNING

Do not use bottle jacks to raise the vehicle. Always use floor jacks. Bottle jacks can slip, allowing the vehicle to fall, which could result in damage to the vehicle, serious injury, or death.

NOTICE

NOTICE: Do not place jack stands under any of the suspension components; doing so could cause suspension component damage. Jack stands can be placed at any point below the axle, including the differential area.

1. Using the floor jack, raise the vehicle to remove any jack stands used to support the vehicle.
2. Slowly lower the vehicle to the ground.
3. Inflate the air suspension, and check for proper operation. Refer to Group 32 in the Shuttle Bus Chassis Workshop Manual for instructions.

Raising a Vehicle without Air Suspension

1. Park the vehicle on a level surface, set the parking brakes, and shut down the engine. Chock the tires.

WARNING

Do not use bottle jacks to raise the vehicle. Always use floor jacks. Bottle jacks can slip, allowing the vehicle to fall, which could result in damage to the vehicle, serious injury, or death.

IMPORTANT: Only lift unloaded vehicles and vehicles disconnected from trailers. Unload vehicles with bodies (drilling rigs, mixers) as much as possible.

2. Place a floor jack under the axle housing, the clamp group, or the frame rail.

NOTICE

NOTICE: Do not place jack stands under any of the suspension components; doing so could cause suspension component damage. Jack stands can be placed at any point below the axle, including the differential area.

3. Raise the vehicle. Add additional jack stands, as needed, to support the vehicle.

Lowering a Vehicle without Air Suspension

WARNING

Do not use bottle jacks to raise the vehicle. Always use floor jacks. Bottle jacks can slip, allowing the vehicle to fall, which could result in damage to the vehicle, serious injury, or death.

NOTICE

NOTICE: Do not place jack stands under any of the suspension components; doing so could cause suspension component damage. Jack stands can be placed at any point below the axle, including the differential area.

1. Using the floor jack, raise the vehicle to remove any jack stands used to support the vehicle.
2. Slowly lower the vehicle to the ground.
Towing The Vehicle

WARNING

Do not tow an unbraked vehicle if the combined weight of both vehicles is more than the sum of the gross axle weight ratings (GAWR) of the towing vehicle. Otherwise brake capacity will be inadequate, which could result in personal injury or death.

IMPORTANT: When it is necessary to tow the vehicle, make sure that the instructions below are closely followed to prevent damage to the vehicle.

When towing or pushing any vehicle equipped with an Allison transmission, disconnect the driveshaft at the rear axle and support it as necessary, regardless of the distance or speed traveled.

NOTE: Towing rules and regulations vary from federal, state, local, and transit authority. These laws must be followed when towing the vehicle.

Removing the Transmission from the Park (P) Position

If a vehicle with a shift-by-wire (SBW) system needs to be towed and the system cannot be activated to take the transmission out of Park (P), follow the steps in the procedure below.

1. Set the parking brake on the tow vehicle.
2. Chock the tires of the tow vehicle.
3. Set the parking brake on the disabled vehicle.
4. Chock the tires of the disabled vehicle.
5. Underneath the disabled vehicle, at the transmission, remove the access hole plug at the rear of the SBW actuator. See Fig. 14.1.
6. Insert a 3/16-inch Allen wrench or hex key through the access hole into the rear of the actuator. Turn the Allen wrench in a clockwise direction until the transmission comes out of the Park (P) position.
7. Replace the access hole plug.
8. Remove the chocks from the tires of both vehicles.

Front Towing Hookup

1. Disconnect the battery ground cables.
2. Remove the bumper.
3. Attach the towing device. Due to the many variables that exist in towing, positioning the lifting and towing device is the sole responsibility of the towing-vehicle operator.

NOTICE

Failure to protect the frame rails from the chains could cause damage, leading to eventual frame failure.

4. Lift the vehicle and secure the safety chains. If extra towing clearance is needed, remove the front wheels.
5. Connect the clearance lights, taillights, and signal lights. Connect any special towing lights required by local regulations.

WARNING

Failure to chock the tires or connect the tow truck’s air brake system before releasing the
spring parking brakes could allow the disabled vehicle to suddenly roll. This could cause property damage or personal injury.

--- NOTICE ---

Before attempting to tow a vehicle with an air suspension (and during the towing operation), ensure that the air suspension is properly charged. Charge the suspension through the Schrader valve on the air dryer. Attempting to tow a vehicle with an improperly charged air suspension may result in damage to the chassis and body.

6. Chock the tires on the disabled vehicle and connect the towing vehicle’s air brake system to the vehicle being towed. Then, release the spring parking brake and remove the chocks.

7. On vehicles equipped with hydraulic disc brakes be sure the parking brake is released before starting the towing process.

Rear Towing Hookup

--- WARNING ---

Do not tow an unbraked vehicle if the combined weight of both vehicles is more than the sum of the gross axle weight ratings (GAWR) of the towing vehicle. Otherwise brake capacity will be inadequate, which could result in personal injury or death.

IMPORTANT: When it is necessary to tow the vehicle, make sure that the instructions below are closely followed to prevent damage to the vehicle.

1. Position the front tires pointing straight ahead, and secure the steering wheel in this position.

2. Disconnect the battery ground cable.

--- WARNING ---

Due to the many variables that exist in towing, positioning the lifting and towing device is the sole responsibility of the tow vehicle operator. The operator must be familiar with standard towing industry safety measures. Improper procedures could result in personal injury or death.

3. Attach the towing device.

4. Lift the vehicle, and secure the safety towing chains. If additional clearance is needed, remove the bumper extension, if so equipped.

5. Connect the clearance lights, taillights, and signal lights. Also connect any special towing lights required by local regulations.
Specifications

Torque Charts ... 15.1
Conversion Charts .. 15.4
Replacement Light Bulbs .. 15.5
Fluids and Lubricants ... 15.5
Fuse Information ... 15.7
Specifications

Torque Charts

<table>
<thead>
<tr>
<th>Thread Diameter—Pitch</th>
<th>Regular Hex</th>
<th>Flanged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 5 Bolt</td>
<td>Grade 5 or 8.2 Bolt</td>
</tr>
<tr>
<td></td>
<td>Grade 5 or B Nut</td>
<td>Grade 8 or 8.2 Bolt</td>
</tr>
<tr>
<td></td>
<td>Torque: lbf·ft (N·m)</td>
<td>Torque: lbf·ft (N·m)</td>
</tr>
<tr>
<td>1/4–20</td>
<td>7 (9)</td>
<td>8 (11)</td>
</tr>
<tr>
<td>1/4–28</td>
<td>8 (11)</td>
<td>9 (12)</td>
</tr>
<tr>
<td>5/16–18</td>
<td>15 (20)</td>
<td>16 (22)</td>
</tr>
<tr>
<td>5/16–24</td>
<td>16 (22)</td>
<td>17 (23)</td>
</tr>
<tr>
<td>3/8–16</td>
<td>26 (35)</td>
<td>28 (38)</td>
</tr>
<tr>
<td>3/8–24</td>
<td>30 (41)</td>
<td>32 (43)</td>
</tr>
<tr>
<td>7/16–14</td>
<td>42 (57)</td>
<td>45 (61)</td>
</tr>
<tr>
<td>7/16–20</td>
<td>47 (64)</td>
<td>50 (68)</td>
</tr>
<tr>
<td>1/2–13</td>
<td>64 (87)</td>
<td>68 (92)</td>
</tr>
<tr>
<td>1/2–20</td>
<td>72 (98)</td>
<td>77 (104)</td>
</tr>
<tr>
<td>9/16–12</td>
<td>92 (125)</td>
<td>98 (133)</td>
</tr>
<tr>
<td>9/16–18</td>
<td>103 (140)</td>
<td>110 (149)</td>
</tr>
<tr>
<td>5/8–11</td>
<td>128 (173)</td>
<td>136 (184)</td>
</tr>
<tr>
<td>5/8–18</td>
<td>145 (197)</td>
<td>154 (209)</td>
</tr>
<tr>
<td>3/4–10</td>
<td>226 (306)</td>
<td>241 (327)</td>
</tr>
<tr>
<td>3/4–16</td>
<td>253 (343)</td>
<td>269 (365)</td>
</tr>
<tr>
<td>7/8–9</td>
<td>365 (495)</td>
<td>388 (526)</td>
</tr>
<tr>
<td>7/8–14</td>
<td>402 (545)</td>
<td>427 (579)</td>
</tr>
<tr>
<td>1–8</td>
<td>—</td>
<td>582 (789)</td>
</tr>
<tr>
<td>1–12</td>
<td>—</td>
<td>637 (863)</td>
</tr>
<tr>
<td>1–14</td>
<td>—</td>
<td>652 (884)</td>
</tr>
</tbody>
</table>

* FCCC recommends that all plated and unplated fasteners be coated with oil before installation.

† Use these torque values if either the bolt or nut is lubricated or plated (zinc-phosphate conversion-coated, cadmium-plated, or waxed, Geomet 321XL coated, or waxed).

Table 15.1, Torque Values for U.S. Customary Thread Fasteners With Lubricated or Plated Threads
Torque Values for U.S. Customary Thread Fasteners With Dry (Unlubricated)* Plain (Unplated) Threads†

<table>
<thead>
<tr>
<th>Thread Diameter—Pitch</th>
<th>Regular Hex</th>
<th>Flanged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 5 Bolt</td>
<td>Grade 8 or 8.2 Bolt</td>
</tr>
<tr>
<td></td>
<td>Grade 5 or B Nut</td>
<td>Grade 8 or 8.2 Bolt</td>
</tr>
<tr>
<td></td>
<td>Torque: lbf·ft (N·m)</td>
<td>Torque: lbf·ft (N·m)</td>
</tr>
<tr>
<td>1/4–20</td>
<td>8 (11)</td>
<td>10 (14)</td>
</tr>
<tr>
<td>1/4–28</td>
<td>9 (12)</td>
<td>12 (16)</td>
</tr>
<tr>
<td>5/16–18</td>
<td>15 (20)</td>
<td>22 (30)</td>
</tr>
<tr>
<td>5/16–24</td>
<td>17 (23)</td>
<td>25 (34)</td>
</tr>
<tr>
<td>3/8–16</td>
<td>28 (38)</td>
<td>40 (54)</td>
</tr>
<tr>
<td>3/8–24</td>
<td>31 (42)</td>
<td>45 (61)</td>
</tr>
<tr>
<td>7/16–14</td>
<td>45 (61)</td>
<td>65 (88)</td>
</tr>
<tr>
<td>7/16–20</td>
<td>50 (68)</td>
<td>70 (95)</td>
</tr>
<tr>
<td>1/2–13</td>
<td>70 (95)</td>
<td>95 (129)</td>
</tr>
<tr>
<td>1/2–20</td>
<td>75 (102)</td>
<td>110 (149)</td>
</tr>
<tr>
<td>9/16–12</td>
<td>100 (136)</td>
<td>140 (190)</td>
</tr>
<tr>
<td>9/16–18</td>
<td>110 (149)</td>
<td>155 (210)</td>
</tr>
<tr>
<td>5/8–11</td>
<td>135 (183)</td>
<td>190 (258)</td>
</tr>
<tr>
<td>5/8–18</td>
<td>155 (210)</td>
<td>215 (292)</td>
</tr>
<tr>
<td>3/4–10</td>
<td>240 (325)</td>
<td>340 (461)</td>
</tr>
<tr>
<td>3/4–16</td>
<td>270 (366)</td>
<td>380 (515)</td>
</tr>
<tr>
<td>7/8–9</td>
<td>385 (522)</td>
<td>540 (732)</td>
</tr>
<tr>
<td>7/8–14</td>
<td>425 (576)</td>
<td>600 (813)</td>
</tr>
<tr>
<td>1–8</td>
<td>580 (786)</td>
<td>820 (1112)</td>
</tr>
<tr>
<td>1–12</td>
<td>635 (861)</td>
<td>900 (1220)</td>
</tr>
<tr>
<td>1–14</td>
<td>650 (881)</td>
<td>915 (1241)</td>
</tr>
</tbody>
</table>

* Threads may have residual oil, but will be dry to the touch.

† Male and female threads (bolt and nut) must both be unlubricated and unplated. If either is plated or lubricated, use Table 15.1. FCCC recommends that all plated and unplated fasteners be coated with oil before installation.

Table 15.2, Torque Values for U.S. Customary Thread Fasteners With Dry (Unlubricated) Plain (Unplated) Threads
Torque Values for Metric Thread Fasteners With Lubricated* or Plated Threads†

<table>
<thead>
<tr>
<th>Thread Diameter—Pitch</th>
<th>Class 8.8 Bolt</th>
<th>Class 8 Nut</th>
<th>Class 10.9 Bolt</th>
<th>Class 10 Nut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Torque: lbf·ft (N·m)</td>
<td>Torque: lbf·ft (N·m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>5 (7)</td>
<td>7 (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>12 (16)</td>
<td>17 (23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8 x 1</td>
<td>13 (18)</td>
<td>18 (24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>24 (33)</td>
<td>34 (46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M10 x 1.25</td>
<td>27 (37)</td>
<td>38 (52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>42 (57)</td>
<td>60 (81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M12 x 1.5</td>
<td>43 (58)</td>
<td>62 (84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>66 (89)</td>
<td>95 (129)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14 x 1.5</td>
<td>72 (98)</td>
<td>103 (140)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16</td>
<td>103 (140)</td>
<td>148 (201)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16 x 1.5</td>
<td>110 (149)</td>
<td>157 (213)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M18</td>
<td>147 (199)</td>
<td>203 (275)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M18 x 1.5</td>
<td>165 (224)</td>
<td>229 (310)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M20</td>
<td>208 (282)</td>
<td>288 (390)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M20 x 1.5</td>
<td>213 (313)</td>
<td>320 (434)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M22</td>
<td>283 (384)</td>
<td>392 (531)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M22 x 1.5</td>
<td>315 (427)</td>
<td>431 (584)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M24</td>
<td>360 (488)</td>
<td>498 (675)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M24 x 2</td>
<td>392 (531)</td>
<td>542 (735)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M27</td>
<td>527 (715)</td>
<td>729 (988)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M27 x 2</td>
<td>569 (771)</td>
<td>788 (1068)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M30</td>
<td>715 (969)</td>
<td>990 (1342)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M30 x 2</td>
<td>792 (1074)</td>
<td>1096 (1486)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* FCCC recommends that all plated and unplated fasteners be coated with oil before installation.
† Use these torque values if either the bolt or nut is lubricated or plated (zinc-phosphate conversion-coated, cadmium-plated, or waxed, Geomet 321XL coated, or waxed).

Table 15.3, Torque Values for Metric Thread Fasteners With Lubricated or Plated Threads
Conversion Charts

<table>
<thead>
<tr>
<th>When You Know U.S. Customary</th>
<th>Multiply By</th>
<th>To Get Metric</th>
<th>When You Know Metric</th>
<th>Multiply By</th>
<th>To Get U.S. Customary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inches (in)</td>
<td>25.4</td>
<td>millimeters (mm)</td>
<td>0.03937</td>
<td>inches (in)</td>
<td></td>
</tr>
<tr>
<td>inches (in)</td>
<td>2.54</td>
<td>centimeters (cm)</td>
<td>0.3937</td>
<td>inches (in)</td>
<td></td>
</tr>
<tr>
<td>feet (ft)</td>
<td>0.3048</td>
<td>meters (m)</td>
<td>3.281</td>
<td>feet (ft)</td>
<td></td>
</tr>
<tr>
<td>yards (yd)</td>
<td>0.9144</td>
<td>meters (m)</td>
<td>1.094</td>
<td>yards (yd)</td>
<td></td>
</tr>
<tr>
<td>miles (mi)</td>
<td>1.609</td>
<td>kilometers (km)</td>
<td>0.6215</td>
<td>miles (mi)</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>square inches (in²)</td>
<td>645.16</td>
<td>square millimeters (mm²)</td>
<td>0.00155</td>
<td>square inches (in²)</td>
<td></td>
</tr>
<tr>
<td>square inches (in²)</td>
<td>6.452</td>
<td>square centimeters (cm²)</td>
<td>0.155</td>
<td>square inches (in²)</td>
<td></td>
</tr>
<tr>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square meters (m²)</td>
<td>10.764</td>
<td>square feet (ft²)</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cubic inches (in³)</td>
<td>16387.0</td>
<td>cubic millimeter (mm³)</td>
<td>0.000061</td>
<td>cubic inches (in³)</td>
<td></td>
</tr>
<tr>
<td>cubic inches (in³)</td>
<td>16.387</td>
<td>cubic centimeters (cm³)</td>
<td>0.06102</td>
<td>cubic inches (in³)</td>
<td></td>
</tr>
<tr>
<td>cubic inches (in³)</td>
<td>0.01639</td>
<td>liters (L)</td>
<td>61.024</td>
<td>cubic inches (in³)</td>
<td></td>
</tr>
<tr>
<td>fluid ounces (fl oz)</td>
<td>29.54</td>
<td>milliliters (mL)</td>
<td>0.03381</td>
<td>fluid ounces (fl oz)</td>
<td></td>
</tr>
<tr>
<td>pints (pt)</td>
<td>0.47318</td>
<td>liters (L)</td>
<td>2.1134</td>
<td>pints (pt)</td>
<td></td>
</tr>
<tr>
<td>quarts (qt)</td>
<td>0.94635</td>
<td>liters (L)</td>
<td>1.0567</td>
<td>quarts (qt)</td>
<td></td>
</tr>
<tr>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>liters (L)</td>
<td>0.2642</td>
<td>gallons (gal)</td>
<td></td>
</tr>
<tr>
<td>cubic feet (ft³)</td>
<td>28.317</td>
<td>liters (L)</td>
<td>0.03531</td>
<td>cubic feet (ft³)</td>
<td></td>
</tr>
<tr>
<td>cubic feet (ft³)</td>
<td>0.02832</td>
<td>cubic meters (m³)</td>
<td>35.315</td>
<td>cubic feet (ft³)</td>
<td></td>
</tr>
<tr>
<td>Weight/Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ounces (av) (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
<td>0.03527</td>
<td>ounces (av) (oz)</td>
<td></td>
</tr>
<tr>
<td>pounds (av) (lb)</td>
<td>0.454</td>
<td>kilograms (kg)</td>
<td>2.205</td>
<td>pounds (av) (lb)</td>
<td></td>
</tr>
<tr>
<td>U.S. tons (t)</td>
<td>907.18</td>
<td>kilograms (kg)</td>
<td>0.001102</td>
<td>U.S. tons (t)</td>
<td></td>
</tr>
<tr>
<td>U.S. tons (t)</td>
<td>0.90718</td>
<td>metric tons (t)</td>
<td>1.1023</td>
<td>U.S. tons (t)</td>
<td></td>
</tr>
<tr>
<td>Torque/Work Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inch–pounds (lbf·in)</td>
<td>11.298</td>
<td>Newton–centimeters (N·cm)</td>
<td>0.08851</td>
<td>inch–pounds (lbf·in)</td>
<td></td>
</tr>
<tr>
<td>foot–pounds (lbf·ft)</td>
<td>1.3558</td>
<td>Newton–meters (N·m)</td>
<td>0.7376</td>
<td>foot–pounds (lbf·ft)</td>
<td></td>
</tr>
<tr>
<td>Pressure/Vacuum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inches of mercury (inHg)</td>
<td>3.37685</td>
<td>kilo Pascals (kPa)</td>
<td>0.29613</td>
<td>inches of mercury (inHg)</td>
<td></td>
</tr>
<tr>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilo Pascals (kPa)</td>
<td>0.14503</td>
<td>pounds per square inch (psi)</td>
<td></td>
</tr>
</tbody>
</table>

Table 15.4, Metric/U.S. Customary Conversion

<table>
<thead>
<tr>
<th>When You Know</th>
<th>Subtract</th>
<th>Then Divide By</th>
<th>To Get</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>Then Add</th>
<th>To Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>degrees Fahrenheit (°F)</td>
<td>32</td>
<td>1.8</td>
<td>degrees Celsius (°C)</td>
<td>1.8</td>
<td>32</td>
<td>degrees Fahrenheit (°F)</td>
<td></td>
</tr>
</tbody>
</table>

Table 15.5, Temperature Conversion
Specifications

Replacement Light Bulbs

<table>
<thead>
<tr>
<th>Light Location</th>
<th>Lamp Trade Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning Panel Lights</td>
<td>53 or LB–0108</td>
</tr>
<tr>
<td>Headlights MB and XB;</td>
<td>2A1</td>
</tr>
<tr>
<td>High Beam</td>
<td>1A1</td>
</tr>
<tr>
<td>Low Beam</td>
<td>2B1</td>
</tr>
<tr>
<td>Gauge Illumination</td>
<td>53, 194 or LB–0107</td>
</tr>
<tr>
<td>Automatic Transmission Gear Selector</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 15.6, Replacement Light Bulbs

Fluids and Lubricants

<table>
<thead>
<tr>
<th>Component</th>
<th>Recommended Fluid or Lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Axle Spindle Pins, Tie Rods, Drag Link, Intermediate Steering</td>
<td>Multipurpose Grease Lithium 12 Hydroxy Stearate NLGI No. 2; for temperatures below 0°F (–18°C), use MIL-G-10924B</td>
</tr>
<tr>
<td>Shaft, Front Brake and Pedal Shafts</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Brake Master Cylinder</td>
<td>Heavy-Duty DOT 3 Brake Fluid</td>
</tr>
<tr>
<td>Brake and Pedal Pivots</td>
<td>Starplex 2 (lithium soap-based grease)</td>
</tr>
<tr>
<td>Engine</td>
<td>See Manufacturer’s Recommendations</td>
</tr>
<tr>
<td>Fuel</td>
<td>Ultralow-Sulfur Diesel Fuel</td>
</tr>
<tr>
<td>Disc Brake Caliper Rails</td>
<td>FCCC No. 4JD623 Brake Caliper Slide Grease</td>
</tr>
<tr>
<td>Rear Axle Differential</td>
<td>See Manufacturer’s Recommendations</td>
</tr>
<tr>
<td>Hydraulic Steering System Reservoir</td>
<td>Dexron® III or approved equivalent</td>
</tr>
<tr>
<td>Engine Coolant</td>
<td>Refer to the engine manufacturer’s service literature for approved coolant.</td>
</tr>
</tbody>
</table>

Table 15.7, Fluid and Lubricant Specifications

Approved Allison Transmission Lubricants*

<table>
<thead>
<tr>
<th>TES-295 Approval No.</th>
<th>Company</th>
<th>Product Brand Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN-051005</td>
<td>ExxonMobil Lubricants and Petroleum Specialties</td>
<td>Mobil Delvac Synthetic ATF</td>
</tr>
<tr>
<td>AN-011001</td>
<td>Castrol Heavy Duty Lubricants</td>
<td>TranSynd</td>
</tr>
<tr>
<td>AN-031002</td>
<td>BP</td>
<td>Autran Syn 295</td>
</tr>
<tr>
<td>AN-031003</td>
<td>Cognis Corporation</td>
<td>Emsgard 2805</td>
</tr>
<tr>
<td>AN-031004</td>
<td>International Truck & Engine Company</td>
<td>Fleetrite Synthetic ATF</td>
</tr>
<tr>
<td>AN-071006</td>
<td>John Deere & Company</td>
<td>HD SynTran</td>
</tr>
</tbody>
</table>

* To check the latest Allison approved fluids, go to www.allisontransmission.com. Lubricants listed in order of preference. Do not mix types of oil.

Table 15.8, Approved Allison Transmission Lubricants
Approved Driveline Lubricants

<table>
<thead>
<tr>
<th>Lubricant and Specification</th>
<th>Lubricant Brands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exxon 5160</td>
</tr>
<tr>
<td></td>
<td>Amalie All Purpose Grease with Moly–L1–2M</td>
</tr>
<tr>
<td></td>
<td>Shell Super Duty Special FF</td>
</tr>
<tr>
<td></td>
<td>Marathon Maralube Molycode 529</td>
</tr>
<tr>
<td></td>
<td>Shell Moly Poly Grease</td>
</tr>
<tr>
<td></td>
<td>Kendall L424 Grease</td>
</tr>
<tr>
<td></td>
<td>Amoco Super Chassis Grease</td>
</tr>
<tr>
<td></td>
<td>Ford Specification M1C–75B or part number C1AZ 19590</td>
</tr>
</tbody>
</table>

Table 15.9, Approved Driveline Lubricants

Coolant Capacities*

<table>
<thead>
<tr>
<th>Engine Make</th>
<th>Coolant Volume: qt (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cummins</td>
<td>12 (11)</td>
</tr>
</tbody>
</table>

* The total coolant volume is dependent on the number and location of optional passenger heaters.

Table 15.10, Coolant Capacities

Approved Coolants

Refer to the engine manufacturer’s service literature for approved coolant.

Table 15.11, Approved Coolants

Allison Transmission Lubricant Capacities

<table>
<thead>
<tr>
<th>Transmission Model</th>
<th>Fill Capacity:* qt (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000/2000/B210/B220 Series (standard sump)</td>
<td>14.8 (14)</td>
</tr>
<tr>
<td>1000/2000/B210/B220 Series (shallow sump)</td>
<td>12.7 (12)</td>
</tr>
<tr>
<td>2100/2200 Series (shallow sump)</td>
<td>13 (12)</td>
</tr>
<tr>
<td>3000/B300 Series (4 inch)</td>
<td>29 (27)</td>
</tr>
<tr>
<td>3000/B300 Series (2 inch)</td>
<td>26 (25)</td>
</tr>
</tbody>
</table>

* Quantities listed are approximate. Add the recommended amount of fluid as listed under fill capacity. Do not overfill.

Table 15.12, Allison Transmission Lubricant Capacities

Approved Power Steering Fluids

<table>
<thead>
<tr>
<th>Fluid Type*</th>
<th>Approved Fluid*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Transmission Fluid</td>
<td>Dexron® III or equivalent</td>
</tr>
</tbody>
</table>

* Fill the power steering reservoir only with approved clean fluid. Do not mix fluid types. Wear eye protection when changing the fluid and filter.

Table 15.13, Approved Power Steering Fluids
Fuse Information

The fuse/circuit breaker panel is typically located under the instrument panel near the steering column. See Fig. 15.1. Circuit breakers protect against circuit overload. If a circuit becomes overloaded (usually caused by a short to ground), the circuit breaker opens, stopping current flow. Auto-reset breakers are installed. Depending on vehicle options, fuse/circuit breaker locations may vary from those shown. A power distribution panel may also be installed on the vehicle. This panel houses plug-in fuses and relays. See Fig. 15.2 and Fig. 15.3.

See Fig. 15.4 for a typical XB chassis and optional tow power distribution modules.

See Fig. 15.5, Fig. 15.6, Fig. 15.7, and Fig. 15.8 for typical XB chassis fuse/relays.

Electric Service Center

The information under this heading is to help familiarize the driver with the basic electrical system. Servicing the electrical system should be done only by qualified technicians. Special skills and equipment are required. Take your vehicle to an authorized Freightliner Custom Chassis service facility for repairs. The MB and XB chassis use multiple electrical components (and fuel and hydraulic filters); each component is mounted in varying locations on the chassis. If equipped with an Arens service center, it is mounted in one specific location, and that mounting location will vary. See Fig. 15.9.

See Table 15.14, Table 15.15, and Table 15.16 for typical connector locations.

<table>
<thead>
<tr>
<th>Connector Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>ECU-IGN</td>
</tr>
<tr>
<td>1B</td>
<td>FAN-SIG</td>
</tr>
<tr>
<td>1C</td>
<td>FAN NO</td>
</tr>
<tr>
<td>1D</td>
<td>EXTRA</td>
</tr>
<tr>
<td>1E</td>
<td>ECM BATT</td>
</tr>
<tr>
<td>1F</td>
<td>SPARE</td>
</tr>
<tr>
<td>1G</td>
<td>SPARE NC</td>
</tr>
<tr>
<td>1H</td>
<td>DIAG PWR</td>
</tr>
<tr>
<td>1J</td>
<td>FAN NC</td>
</tr>
<tr>
<td>1K</td>
<td>FAN RTN</td>
</tr>
<tr>
<td>1L</td>
<td>MBE ECM BATT</td>
</tr>
<tr>
<td>1M</td>
<td>HYD FAN MOD</td>
</tr>
<tr>
<td>1N</td>
<td>SPARE COM</td>
</tr>
<tr>
<td>1P</td>
<td>IGN</td>
</tr>
</tbody>
</table>

Table 15.14, Connector 1

<table>
<thead>
<tr>
<th>Connector Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>IGN SW START</td>
</tr>
<tr>
<td>2B</td>
<td>TCM BATT</td>
</tr>
<tr>
<td>2C</td>
<td>TCM BATT</td>
</tr>
<tr>
<td>2D</td>
<td>L TURN SIG</td>
</tr>
<tr>
<td>2E</td>
<td>REV LPS SIG</td>
</tr>
<tr>
<td>2F</td>
<td>REV LPS OUT</td>
</tr>
<tr>
<td>2G</td>
<td>GND</td>
</tr>
<tr>
<td>2H</td>
<td>START OUT</td>
</tr>
<tr>
<td>2J</td>
<td>NEU START SIG</td>
</tr>
<tr>
<td>2K</td>
<td>TCM</td>
</tr>
<tr>
<td>2L</td>
<td>MARKER SIG</td>
</tr>
<tr>
<td>2M</td>
<td>R TURN SIG</td>
</tr>
</tbody>
</table>

Table 15.15, Connector 2

<table>
<thead>
<tr>
<th>Connector Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A</td>
<td>REV TOW</td>
</tr>
<tr>
<td>3B</td>
<td>EXTRA</td>
</tr>
<tr>
<td>3C</td>
<td>EXTRA</td>
</tr>
<tr>
<td>3D</td>
<td>EXTRA</td>
</tr>
<tr>
<td>3E</td>
<td>R TURN OUT</td>
</tr>
<tr>
<td>3F</td>
<td>MARKER OUT</td>
</tr>
<tr>
<td>3G</td>
<td>L TURN OUT</td>
</tr>
<tr>
<td>3H</td>
<td>IGN OUT TOW</td>
</tr>
</tbody>
</table>

Table 15.16, Connector 3
Specifications

1. Battery 15 Amp
2. Ignition 20 Amp
3. Inst. Panel 5 Amp
4. Horn 15 Amp
5. Ignition 20 Amp
6. Radio 10 Amp
7. Choke 20 Amp
8. Taillights 20 Amp
9. Gauges 20 Amp
10. Heater 25 Amp
11. Wiper 25 Amp
12. Stop/Hazard Lights 15 Amp
13. Turn/Backup Lights 15 Amp
14. Hazard Flasher

Fig. 15.1, Fuse/Circuit Breaker Locations (typical)

Fig. 15.2, Fuse/Relay/Circuit Breaker Panels (MB chassis, left-side shown, typical)

Fig. 15.3, Fuse/Relay/Circuit Breaker Panels (MB chassis, right-side shown, typical)
Fig. 15.4, Chassis and Optional Tow Power PDMs, (XB chassis mounted)
Fig. 15.5, Fuse/Relay, XB chassis, (typical install)
Specifications

Fig. 15.6, Fuse/Relay, XB chassis, (typical install)
Fig. 15.7, Fuse/Relay, XB chassis, (typical install)
Specifications

Fig. 15.8, Fuse/Relay, XB chassis, (typical install)
1. Connector 4, Power Input A
2. Connector 4, Power Input B
3. Connector 4, Power Input C
4. Connector 3, 8 Positions
5. Connector 1, 16 Positions
6. Connector 2, 12 Positions

Fig. 15.9, Arens Controls
Index

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Air Brake System</td>
<td>9.2</td>
</tr>
<tr>
<td>Automatic Slack Adjusters</td>
<td>9.4</td>
</tr>
<tr>
<td>General Information</td>
<td>9.2</td>
</tr>
<tr>
<td>Meritor WABCO® Antilock Braking System (ABS), Air Brake Systems</td>
<td>9.3</td>
</tr>
<tr>
<td>Operation</td>
<td>9.3</td>
</tr>
<tr>
<td>Allison Automatic Transmissions</td>
<td>7.1</td>
</tr>
<tr>
<td>Automatic Mode (A)</td>
<td>7.10</td>
</tr>
<tr>
<td>Automatic Transmission Multifunction Stalk Switch</td>
<td>7.7</td>
</tr>
<tr>
<td>Direction Switch</td>
<td>7.8</td>
</tr>
<tr>
<td>Driving Precautions</td>
<td>7.1</td>
</tr>
<tr>
<td>Engine Brake</td>
<td>7.9</td>
</tr>
<tr>
<td>Gear Display</td>
<td>7.10</td>
</tr>
<tr>
<td>Gear Switch</td>
<td>7.8</td>
</tr>
<tr>
<td>General Information</td>
<td>7.1</td>
</tr>
<tr>
<td>Manual Mode (M)</td>
<td>7.10</td>
</tr>
<tr>
<td>Mode Switch</td>
<td>7.8</td>
</tr>
<tr>
<td>Operating Instructions, 2100 Series (Arens SBW)</td>
<td>7.3</td>
</tr>
<tr>
<td>Operating Instructions, 3000/ B300 Series</td>
<td>7.5</td>
</tr>
<tr>
<td>Operating Instructions, On-Highway Transmissions</td>
<td>7.2</td>
</tr>
<tr>
<td>Operation Tips</td>
<td>7.10</td>
</tr>
<tr>
<td>Power Up and Shift into Gear</td>
<td>7.9</td>
</tr>
<tr>
<td>Range Inhibit Indicator, 2000 Series</td>
<td>7.2</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>7.1</td>
</tr>
<tr>
<td>Series 1000 PTS, 2100 PTS, 2200 PTS, B210, and B220 Transmission</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>7.1</td>
</tr>
<tr>
<td>Ametek Instrument Panel</td>
<td>3.1</td>
</tr>
<tr>
<td>Menu Navigation</td>
<td>3.4</td>
</tr>
<tr>
<td>Menu System</td>
<td>3.1</td>
</tr>
<tr>
<td>Message Display Center</td>
<td>3.1</td>
</tr>
<tr>
<td>Priority Messages</td>
<td>3.1</td>
</tr>
<tr>
<td>Self-Test</td>
<td>3.1</td>
</tr>
<tr>
<td>Automatic Traction Control</td>
<td>9.5</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Brake Burnishing (new vehicle)</td>
<td>9.4</td>
</tr>
<tr>
<td>Braking Controls</td>
<td>5.11</td>
</tr>
<tr>
<td>Emergency Release of Parking Brake</td>
<td>5.12</td>
</tr>
<tr>
<td>Hand-Operated Parking Brake</td>
<td>5.12</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Parking Brake</td>
<td>5.12</td>
</tr>
<tr>
<td>(optional)</td>
<td></td>
</tr>
<tr>
<td>Parking Brake Control Knob</td>
<td>5.11</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Daily Pretrip Inspection and Maintenance Checklist</td>
<td>10.2</td>
</tr>
<tr>
<td>Daily Pretrip Inspection and Maintenance Procedures</td>
<td>11.1</td>
</tr>
<tr>
<td>Dashboard and Instrument Panel Care</td>
<td>12.1</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Electrical System Controls</td>
<td>5.4</td>
</tr>
<tr>
<td>Battery Disconnect Switch</td>
<td>5.5</td>
</tr>
<tr>
<td>Electronic Stability Control</td>
<td>9.5</td>
</tr>
<tr>
<td>Emergency Starting With Jumper Cables</td>
<td>13.1</td>
</tr>
<tr>
<td>Emissions Labels</td>
<td>1.1</td>
</tr>
<tr>
<td>Aftertreatment System Indicators Label</td>
<td>1.1</td>
</tr>
<tr>
<td>Vehicle Emission Control Information Label</td>
<td>1.2</td>
</tr>
<tr>
<td>Engine Brake</td>
<td>9.5</td>
</tr>
<tr>
<td>Engine Brake Operation</td>
<td>9.6</td>
</tr>
<tr>
<td>Engine Operation</td>
<td>6.2</td>
</tr>
<tr>
<td>Cold-Weather Operation</td>
<td>6.2</td>
</tr>
<tr>
<td>Normal Operation</td>
<td>6.2</td>
</tr>
<tr>
<td>Engine Shutdown</td>
<td>6.10</td>
</tr>
<tr>
<td>Engine Starting</td>
<td>6.1</td>
</tr>
<tr>
<td>Cold-Weather Starting</td>
<td>6.2</td>
</tr>
<tr>
<td>General Information</td>
<td>6.1</td>
</tr>
<tr>
<td>Normal Starting</td>
<td>6.1</td>
</tr>
<tr>
<td>Exhaust Aftertreatment System (ATS)</td>
<td>6.3</td>
</tr>
<tr>
<td>Ametek DEF Warnings and Engine Limits</td>
<td>6.8</td>
</tr>
<tr>
<td>DEF Tank</td>
<td>6.7</td>
</tr>
<tr>
<td>Diesel Exhaust Fluid and Tank, EPA10 and Newer Engines</td>
<td>6.7</td>
</tr>
<tr>
<td>EPA07 Engines</td>
<td>6.4</td>
</tr>
<tr>
<td>Subject</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>EPA10 and Newer Engines</td>
<td>6.4</td>
</tr>
<tr>
<td>Fluids and Lubricants</td>
<td>15.5</td>
</tr>
<tr>
<td>Fuse Information</td>
<td>15.7</td>
</tr>
<tr>
<td>Electric Service Center</td>
<td>15.7</td>
</tr>
<tr>
<td>Gauges</td>
<td>4.7</td>
</tr>
<tr>
<td>Air Intake Restriction Gauge</td>
<td>4.8</td>
</tr>
<tr>
<td>Coolant Temperature Gauge</td>
<td>4.7</td>
</tr>
<tr>
<td>Diesel Exhaust Fluid (DEF) Level Gauge</td>
<td>4.7</td>
</tr>
<tr>
<td>Engine Oil Pressure Gauge</td>
<td>4.7</td>
</tr>
<tr>
<td>Fuel Level Gauge</td>
<td>4.7</td>
</tr>
<tr>
<td>Primary and Secondary Air Pressure Gauges</td>
<td>4.8</td>
</tr>
<tr>
<td>General Information</td>
<td>8.1</td>
</tr>
<tr>
<td>Hazard Warning Lights</td>
<td>13.1</td>
</tr>
<tr>
<td>High Idle Options</td>
<td>6.3</td>
</tr>
<tr>
<td>High Idle with Cruise Control</td>
<td>6.3</td>
</tr>
<tr>
<td>Voltage-Based Auto High Idle</td>
<td>6.3</td>
</tr>
<tr>
<td>Horn Control</td>
<td>5.8</td>
</tr>
<tr>
<td>Hydraulic Brake System</td>
<td>9.1</td>
</tr>
<tr>
<td>General Information</td>
<td>9.1</td>
</tr>
<tr>
<td>Meritor WABCO® Antilock Braking System (ABS), Hydraulic Brake Systems</td>
<td>9.1</td>
</tr>
<tr>
<td>Operation</td>
<td>9.2</td>
</tr>
<tr>
<td>Ignition Switch and Key</td>
<td>5.1</td>
</tr>
<tr>
<td>Push-Button Ignition and Smart Key Fob</td>
<td>5.1</td>
</tr>
<tr>
<td>Standard Ignition and Key</td>
<td>5.1</td>
</tr>
<tr>
<td>Lighting Controls</td>
<td>5.5</td>
</tr>
<tr>
<td>Automatic Ambient Headlight Sensor</td>
<td>5.5</td>
</tr>
<tr>
<td>Fog Lights</td>
<td>5.5</td>
</tr>
<tr>
<td>Hazard Warning Lights</td>
<td>5.6</td>
</tr>
<tr>
<td>Headlights</td>
<td>5.5</td>
</tr>
<tr>
<td>High-Beam Headlights</td>
<td>5.5</td>
</tr>
<tr>
<td>Marker Interrupt</td>
<td>5.6</td>
</tr>
<tr>
<td>Marker Lights</td>
<td>5.6</td>
</tr>
<tr>
<td>Turn Signals</td>
<td>5.6</td>
</tr>
<tr>
<td>Monthly Post-Trip Inspection and Maintenance Checklist</td>
<td>10.3</td>
</tr>
<tr>
<td>Monthly Post-Trip Inspection and Maintenance Procedures</td>
<td>11.10</td>
</tr>
<tr>
<td>OptiView™ Instrument Panel</td>
<td>2.1</td>
</tr>
<tr>
<td>Audible Alerts</td>
<td>2.1</td>
</tr>
<tr>
<td>Emergency Shutdown</td>
<td>2.2</td>
</tr>
<tr>
<td>Gear Shift Position</td>
<td>2.3</td>
</tr>
<tr>
<td>Ignition Sequence</td>
<td>2.1</td>
</tr>
<tr>
<td>Menu Structure</td>
<td>2.3</td>
</tr>
<tr>
<td>Power Steering System</td>
<td>8.1</td>
</tr>
<tr>
<td>Powertrain Controls</td>
<td>5.8</td>
</tr>
<tr>
<td>Allison Automatic Transmissions</td>
<td>5.8</td>
</tr>
<tr>
<td>Backup Alarm</td>
<td>5.11</td>
</tr>
<tr>
<td>Engine Brake Switch</td>
<td>5.11</td>
</tr>
<tr>
<td>Engine Protection Shutdown</td>
<td>5.11</td>
</tr>
<tr>
<td>Override Switch</td>
<td>5.11</td>
</tr>
<tr>
<td>Low Idle Adjustment Switch</td>
<td>5.11</td>
</tr>
<tr>
<td>Manual Dump Valve</td>
<td>5.9</td>
</tr>
<tr>
<td>Tag-Axle Suspension Dump Switch</td>
<td>5.9</td>
</tr>
<tr>
<td>Pretrip and Post-Trip General Information</td>
<td>10.1</td>
</tr>
<tr>
<td>Raising and Lowering a Vehicle</td>
<td>13.4</td>
</tr>
<tr>
<td>Lowering a Vehicle with Air Suspension</td>
<td>13.5</td>
</tr>
<tr>
<td>Lowering a Vehicle without Air Suspension</td>
<td>13.5</td>
</tr>
<tr>
<td>Raising a Vehicle with Air Suspension</td>
<td>13.4</td>
</tr>
<tr>
<td>Raising a Vehicle without Air Suspension</td>
<td>13.5</td>
</tr>
<tr>
<td>Replacement Light Bulbs</td>
<td>15.5</td>
</tr>
<tr>
<td>Running Out of Fuel</td>
<td>13.3</td>
</tr>
<tr>
<td>Diesel Engines</td>
<td>13.3</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>11.1</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Index
Subject Page

Speedometer and Tachometer 4.6
Speedometer 4.6
Tachometer 4.6
Steering Controls 5.13
 Power Tilt/Telescope Steering Column and Adjustable Pedals 5.13
 Standard Tilt/Telescope Steering Column 5.13

T
Tilt/Telescope Steering Column 8.1
 Power Tilt/Telescope Steering Column and Adjustable Pedals 8.1
 Standard Tilt/Telescope Steering Column 8.1
Torque Charts 15.1
Towing The Vehicle 14.1
 Front Towing Hookup 14.1
 Rear Towing Hookup 14.2
Removing the Transmission from the Park (P) Position 14.1

V
Vehicle Identification Number 1.1

W
Warning and Indicator Lamps 4.1
 ABS Warning 4.1
 Adaptive Cruise Control Indicator 4.1
 Air Brake Warning 4.2
 Automatic Traction Control (ATC) Indicator 4.2
 Bluetooth Smartphone Indicator (OptiView only) 4.2
 Check Engine Warning 4.2
 Cruise Control Indicator 4.3
 Diesel Particulate Filter (DPF) Lamp 4.3
 Economy Mode Indicator (OptiView only) 4.4
 Electronic Stability Control (ESC) Indicator 4.4
 Emergency Buzzer 4.4
 Engine Brake Indicator 4.4
 Fasten Seat Belt Warning 4.4
 Fog Lamp Indicator 4.4
 Forward Collision System Indicator (OptiView only) 4.4
 Forward Collision Warning (OptiView only) 4.4
 Headlight/High-Beam/Automatic High-Beam Indicator 4.4
 High Coolant Temperature Warning 4.4
 High Exhaust System Temperature (HEST) Lamp 4.4
 Hydraulic Brake System Warning (Ametek only) 4.4
 Left-Turn Indicator 4.4
 Low Air Pressure Warning 4.4
 Low Battery Voltage Warning 4.5
 Low Diesel Exhaust Fluid (DEF) Warning 4.5
 Low Fuel Indicator 4.5
 Low Oil Pressure Warning 4.5
 Low Windshield Washer Fluid Indicator 4.5
 Maintenance Warning (Ametek only) 4.5
 Malfunction Indicator Lamp (MIL) 4.5
 Marker Light Indicator (OptiView only) 4.5
 Parking Brake On Warning 4.5
 Pedestrian Collision Warning (OptiView only) 4.5
 Right-Turn Indicator 4.5
 Service Transmission Indicator 4.5
 Shift Inhibit Indicator 4.6
 Speed Limit Indicator (OptiView only) 4.6
 Steerable Tag Axle Warning 4.6
 Stop Engine Warning 4.6
 Tire Pressure Monitoring System Indicator 4.6
 Transmission Overheat Warning 4.6
 Transmission Warning 4.6
 Wait to Start Indicator 4.6
 Water In Fuel Indicator 4.6
 Washing and Polishing 12.1
 Weekly Post-Trip Inspection and Maintenance Checklist 10.3
 Weekly Post-Trip Inspection and Maintenance Procedures 11.9
 Windshield Wiper Controls 5.6