Models: 4700 Models
 4800 Models
 4900 Models
 5700 Models
 5900 Models
 6900 Models
Foreword

When performed on a regular basis, lubricating the parts of your vehicle is the least costly way of obtaining safe and reliable vehicle operation. Added benefits and savings occur when you check that the engine, undercarriage, and noise emission control parts are in good working order during lubrication.

IMPORTANT: The maintenance operations in this manual are not all-inclusive. Also refer to other component and body manufacturers’ instructions for specific inspection and maintenance instructions.

Perform the operations in this maintenance manual at scheduled intervals based upon distance traveled or hours of operation. Perform daily, pretrip inspection and maintenance as outlined in the Western Star Driver's Manual.

IMPORTANT: Descriptions and specifications in this manual were in effect at the time of printing. Western Star Trucks reserves the right to discontinue models and to change specifications or design at any time without notice and without incurring obligation. Descriptions and specifications contained in this publication provide no warranty, expressed or implied, and are subject to revision and editions without notice.

Refer to www.Daimler-TrucksNorthAmerica.com and www.WesternStarTrucks.com for more information, or contact Daimler Trucks North America LLC at the address below.

Environmental and Safety Concerns and Recommendations

Whenever you see instructions in this manual to discard materials, you should attempt to reclaim and recycle them. To preserve our environment, follow appropriate environmental rules and regulations when disposing of materials. Servicing vehicles may result in contact with items known to the state of California to cause harm.

⚠️ WARNING

Breathing diesel engine exhaust exposes you to chemicals known to the State of California to cause cancer and birth defects or other reproductive harm.

Always start and operate the engine in a well-ventilated area. If in an enclosed area, vent the exhaust to the outside. Do not modify or tamper with the exhaust system. Do not idle the engine except as necessary.

For more information go to www.P65warnings.ca.gov/diesel.

⚠️ WARNING

Cancer and Reproductive Harm www.P65warnings.ca.gov/diesel.

NOTICE: Parts Replacement Considerations

Do not replace suspension, axle, or steering parts (such as springs, wheels, hubs, and steering gears) with used parts. Used parts may have been subjected to collisions or improper use and have undetected structural damage.
Introduction

Descriptions of Service Publications

Daimler Trucks North America LLC distributes the following major service publications in paper and electronic formats. Refer to www.DTNAConnect.com.

Workshop/Service Manual
Workshop/service manuals contain service and repair information for all vehicle systems and components, except for major components such as engines, transmissions, and rear axles. Each workshop/service manual section is divided into subjects that can include general information, principles of operation, removal, disassembly, assembly, installation, and specifications.

Maintenance Manual
Maintenance manuals contain routine maintenance procedures and intervals for vehicle components and systems. They have information such as lubrication procedures and tables, fluid replacement procedures, fluid capacities, specifications, and procedures for adjustments and for checking the tightness of fasteners. Maintenance manuals do not contain detailed repair or service information.

Driver’s/Operator’s Manual
Driver’s/operator’s manuals contain information needed to enhance the driver’s understanding of how to operate and care for the vehicle and its components. Each manual contains a chapter that covers pre-trip and post-trip inspections, and daily, weekly, and monthly maintenance of vehicle components. Driver’s/operator’s manuals do not contain detailed repair or service information.

Service Bulletins
Service bulletins provide the latest service tips, field repairs, product improvements, and related information. Some service bulletins are updates to information in the workshop/service manual. These bulletins take precedence over workshop/service manual information, until the latter is updated; at that time, the bulletin is usually canceled. The service bulletins manual is available only to dealers. When doing service work on a vehicle system or part, check for a valid service bulletin for the latest information on the subject.

IMPORTANT: Before using a particular service bulletin, check the current service bulletin validity list to be sure the bulletin is valid.

Parts Technical Bulletins
Parts technical bulletins provide information on parts. These bulletins contain lists of parts and BOMs needed to do replacement and upgrade procedures.

Web-based repair, service, and parts documentation can be accessed using the following applications on the www.DTNAConnect.com website.

DTNAConnect
DTNAConnect provides Web-based access to the most up-to-date versions of the publications listed above. In addition, the Service Solutions feature provides diagnostic assistance with Symptoms Search, by connecting to a large knowledge base gathered from technicians and service personnel. Search results for both documents and service solutions can be narrowed by initially entering vehicle identification data.

PartsPro
PartsPro® is an electronic parts catalog system, showing the specified vehicle’s build record.

EZWiring
EZWiring™ makes Western Star, Freightliner, Freightliner Custom Chassis Corporation, Sterling, and Thomas Built Buses products’ wiring drawings and floating pin lists available online for viewing and printing. EZWiring can also be accessed from within PartsPro.
Introduction

Descriptions of Service Publications

Warranty-related service information available on the www.DTNACconnect.com website includes the following documentation.

Recall Campaigns
Recall campaigns cover situations that involve service work or replacement of parts in connection with a recall notice. These campaigns pertain to matters of vehicle safety. All recall campaigns are distributed to dealers; customers receive notices that apply to their vehicles.

Field Service Campaigns
Field service campaigns are concerned with non-safety-related service work or replacement of parts. All field service campaigns are distributed to dealers; customers receive notices that apply to their vehicles.
For an example of a Western Star Maintenance Manual page, see Fig. 1.

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Check the tires.
2. If the vehicle has just been driven, allow a few minutes for the lubricant to settle.
3. Clean the oil fill hole plug (located in the carrier or the side of the axle housing) and the area surrounding it, then remove the plug. For Freightliner axles, see Fig. 1; for Meritor axles, see Fig. 2; for Dana Spicer axles, see Fig. 3.

NOTE: Some Freightliner and Meritor axles have a small tapped and plugged hole located below the housing oil fill hole. This smaller hole is for the lubricant temperature sensor only and must not be used as a fill or level hole.

IMPORTANT: A lubricant level close enough to be seen or touched is not sufficient. It must be level with the bottom of the fill hole.

4. Check the level of the lubricant. The lubricant must be level with the bottom of the oil fill hole (see Fig. 4). If low, add lubricant.
 - For Freightliner axles, see Table 1 for approved axle lubricants and lubricant capacities.
 - For Meritor axles, see Table 2 for approved axle lubricants, and Table 3 and Table 4 for axle capacities.
 - For Dana Spicer axles, see Table 5 for approved axle lubricants, and Table 6 for axle capacities.

5. Install the oil fill hole plug and tighten it per the following:
 - For Freightliner axles: 37 lbf·ft (50 N·m).
 - For Meritor axles: 35 lbf·ft (47 N·m).
 - For Dana Spicer axles: 50 lbf·ft (68 N·m).

6. On non-drive axles using oil-lubricated wheel bearings, clean the hub cap and plug to minimize the possibility of dirt and road grime entering the assembly. Remove the plug, and check the oil level. If low, add fluid using the same lubricant recommended for the drive axle.

Western Star Maintenance Manual, November 2011

Fig. 1, Example Page
Maintenance Manual Contents

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Group Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>General Information</td>
</tr>
<tr>
<td>01</td>
<td>Engine</td>
</tr>
<tr>
<td>09</td>
<td>Air Intake</td>
</tr>
<tr>
<td>13</td>
<td>Air Compressor</td>
</tr>
<tr>
<td>15</td>
<td>Alternators and Starters</td>
</tr>
<tr>
<td>20</td>
<td>Engine Cooling/Radiator</td>
</tr>
<tr>
<td>25</td>
<td>Clutch</td>
</tr>
<tr>
<td>26</td>
<td>Transmission</td>
</tr>
<tr>
<td>31</td>
<td>Frame and Frame Components</td>
</tr>
<tr>
<td>32</td>
<td>Suspension</td>
</tr>
<tr>
<td>33</td>
<td>Front Axle</td>
</tr>
<tr>
<td>35</td>
<td>Rear Axle</td>
</tr>
<tr>
<td>40</td>
<td>Wheels and Tires</td>
</tr>
<tr>
<td>41</td>
<td>Driveline</td>
</tr>
<tr>
<td>42</td>
<td>Brakes</td>
</tr>
<tr>
<td>46</td>
<td>Steering</td>
</tr>
<tr>
<td>47</td>
<td>Fuel</td>
</tr>
<tr>
<td>49</td>
<td>Exhaust</td>
</tr>
<tr>
<td>60</td>
<td>Cab</td>
</tr>
<tr>
<td>72</td>
<td>Doors</td>
</tr>
<tr>
<td>83</td>
<td>Heater and Air Conditioner</td>
</tr>
<tr>
<td>88</td>
<td>Hood, Grille, and Cab Fenders</td>
</tr>
<tr>
<td>Title of Maintenance Operation (MOP)</td>
<td>MOP Number</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Determining Scheduled Maintenance Intervals</td>
<td>00-01</td>
</tr>
<tr>
<td>Initial Maintenance (IM) Operations</td>
<td>00-05</td>
</tr>
<tr>
<td>Lubrication and Fluid Level Check</td>
<td>00-06</td>
</tr>
<tr>
<td>M1 Maintenance Interval Operations Table</td>
<td>00-07</td>
</tr>
<tr>
<td>M2 Maintenance Interval Operations Table</td>
<td>00-08</td>
</tr>
<tr>
<td>M3 Maintenance Interval Operations Table</td>
<td>00-09</td>
</tr>
<tr>
<td>M4 Maintenance Interval Operations Table</td>
<td>00-10</td>
</tr>
<tr>
<td>Maintenance Operation Sets Table</td>
<td>00-04</td>
</tr>
<tr>
<td>Maintenance Service Table</td>
<td>00-02</td>
</tr>
<tr>
<td>Noise Emission Controls Maintenance</td>
<td>00-11</td>
</tr>
<tr>
<td>Vehicle Maintenance Schedule Tables</td>
<td>00-03</td>
</tr>
<tr>
<td>Verification of Inspections Log</td>
<td>00-12</td>
</tr>
</tbody>
</table>
Determining Scheduled Maintenance Intervals

Performing regular maintenance will help ensure that your Western Star vehicle delivers safe, reliable service and optimum performance for years to come. Failure to follow a regular maintenance program can result in inefficient operation and unscheduled downtime.

To determine the correct maintenance intervals for your vehicle, you must first determine the type of service or conditions in which the vehicle will be operating. Generally, most vehicles operate under conditions that fall within one of the two types of service described. Before placing your new vehicle in service, determine the type of service (Service Schedule I or II) that applies to the intended use of the vehicle. After determining the vehicle’s type of service, refer to the Maintenance Service Table (00–02) or the Vehicle Maintenance Schedule Tables (00–03) to determine how often maintenance should be performed.

When the vehicle reaches the distance given for a maintenance interval, see the applicable Maintenance Interval Operations Table for a list of the maintenance operations to be performed at that maintenance interval. Use the maintenance operation numbers to find detailed instructions in the manual on each operation.

Types of Service

Service Schedule I (severe service) applies to vehicles that travel less than 60,000 miles (100 000 km) annually or that operate under severe conditions. Examples of Service Schedule I usage are:

- operation on extremely poor roads or where there is heavy dust accumulation
- constant exposure to extreme hot, cold, salt air, or other extreme climates
- frequent short-distance travel
- construction-site operation
- city operation such as fire truck or garbage truck
- logging
- farm operation

Service Schedule II (long-haul transport) applies to vehicles that travel more than 60,000 miles (100 000 km) annually with minimal city or stop-and-go operation. Examples of Service Schedule II usage are:

- regional delivery that is mostly freeway miles
- interstate transport
- any highway operation with high annual mileage

NOTE: Maintenance instructions in this manual are based on average vehicle use and normal operating conditions. Unusual vehicle operating conditions may require service at more frequent intervals.
Maintenance Service Schedule Table

<table>
<thead>
<tr>
<th>Service Schedule</th>
<th>Maintenance Interval Operation</th>
<th>Maintenance Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Schedule I — (severe service) vehicles that travel up to 60,000 miles (100 000 km) annually</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Maintenance (IM)</td>
<td>first</td>
<td>1000</td>
</tr>
<tr>
<td>Maintenance 1 (M1)</td>
<td>every</td>
<td>1000</td>
</tr>
<tr>
<td>Maintenance 2 (M2)</td>
<td>every</td>
<td>5000</td>
</tr>
<tr>
<td>Maintenance 3 (M3)</td>
<td>every</td>
<td>10,000</td>
</tr>
<tr>
<td>Maintenance 4 (M4)</td>
<td>every</td>
<td>20,000</td>
</tr>
<tr>
<td>Service Schedule II† — (long-haul transport) vehicles that travel over 60,000 miles (100 000 km) annually</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Maintenance (IM)</td>
<td>first</td>
<td>12,500</td>
</tr>
<tr>
<td>Maintenance 1 (M1)</td>
<td>every</td>
<td>12,500</td>
</tr>
<tr>
<td>Maintenance 2 (M2)</td>
<td>every</td>
<td>50,000</td>
</tr>
<tr>
<td>Maintenance 3 (M3)</td>
<td>every</td>
<td>100,000</td>
</tr>
<tr>
<td>Maintenance 4 (M4)</td>
<td>every</td>
<td>300,000</td>
</tr>
</tbody>
</table>

* For Service Schedule I (severe service) vehicles equipped with an hourmeter, use maintenance intervals based on hours of operation rather than distance traveled.
† Use Service Schedule I (severe service) maintenance intervals for vehicles that operate under severe conditions, such as extremely poor roads, heavy dust accumulation, extreme climate, frequent short distance travel, construction-site operation, logging, city operation, or farm operation.

Table 1, Maintenance Service Schedule Table
<table>
<thead>
<tr>
<th>Maint. No.</th>
<th>Required Maintenance Operation Interval</th>
<th>Service Date</th>
<th>Service I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Initial Maintenance (IM)/M1</td>
<td>1000</td>
<td>1600</td>
</tr>
<tr>
<td>2nd</td>
<td>M1</td>
<td>2000</td>
<td>3200</td>
</tr>
<tr>
<td>3rd</td>
<td>M1</td>
<td>3000</td>
<td>4800</td>
</tr>
<tr>
<td>4th</td>
<td>M1</td>
<td>4000</td>
<td>6400</td>
</tr>
<tr>
<td>5th</td>
<td>M1 and M2</td>
<td>5000</td>
<td>8000</td>
</tr>
<tr>
<td>6th</td>
<td>M1</td>
<td>6000</td>
<td>9600</td>
</tr>
<tr>
<td>7th</td>
<td>M1</td>
<td>7000</td>
<td>11 200</td>
</tr>
<tr>
<td>8th</td>
<td>M1</td>
<td>8000</td>
<td>12 800</td>
</tr>
<tr>
<td>9th</td>
<td>M1</td>
<td>9000</td>
<td>14 400</td>
</tr>
<tr>
<td>10th</td>
<td>M1, M2, and M3</td>
<td>10,000</td>
<td>16 000</td>
</tr>
<tr>
<td>11th</td>
<td>M1</td>
<td>11,000</td>
<td>17 600</td>
</tr>
<tr>
<td>12th</td>
<td>M1</td>
<td>12,000</td>
<td>19 200</td>
</tr>
<tr>
<td>13th</td>
<td>M1</td>
<td>13,000</td>
<td>20 800</td>
</tr>
<tr>
<td>14th</td>
<td>M1</td>
<td>14,000</td>
<td>22 400</td>
</tr>
<tr>
<td>15th</td>
<td>M1 and M2</td>
<td>15,000</td>
<td>24 000</td>
</tr>
<tr>
<td>16th</td>
<td>M1</td>
<td>16,000</td>
<td>25 600</td>
</tr>
<tr>
<td>17th</td>
<td>M1</td>
<td>17,000</td>
<td>27 200</td>
</tr>
<tr>
<td>18th</td>
<td>M1</td>
<td>18,000</td>
<td>28 800</td>
</tr>
<tr>
<td>19th</td>
<td>M1</td>
<td>19,000</td>
<td>30 400</td>
</tr>
<tr>
<td>20th</td>
<td>M1, M2, M3, and M4</td>
<td>20,000</td>
<td>32 000</td>
</tr>
<tr>
<td>21st</td>
<td>M1</td>
<td>21,000</td>
<td>33 600</td>
</tr>
<tr>
<td>22nd</td>
<td>M1</td>
<td>22,000</td>
<td>35 200</td>
</tr>
<tr>
<td>23rd</td>
<td>M1</td>
<td>23,000</td>
<td>36 800</td>
</tr>
<tr>
<td>24th</td>
<td>M1</td>
<td>24,000</td>
<td>38 400</td>
</tr>
<tr>
<td>25th</td>
<td>M1 and M2</td>
<td>25,000</td>
<td>40 000</td>
</tr>
<tr>
<td>26th</td>
<td>M1</td>
<td>26,000</td>
<td>41 600</td>
</tr>
<tr>
<td>27th</td>
<td>M1</td>
<td>27,000</td>
<td>43 200</td>
</tr>
<tr>
<td>28th</td>
<td>M1</td>
<td>28,000</td>
<td>44 800</td>
</tr>
<tr>
<td>29th</td>
<td>M1</td>
<td>29,000</td>
<td>46 400</td>
</tr>
<tr>
<td>30th</td>
<td>M1, M2, and M3</td>
<td>30,000</td>
<td>48 000</td>
</tr>
<tr>
<td>31st</td>
<td>M1</td>
<td>31,000</td>
<td>49 600</td>
</tr>
<tr>
<td>32nd</td>
<td>M1</td>
<td>32,000</td>
<td>51 200</td>
</tr>
<tr>
<td>33rd</td>
<td>M1</td>
<td>33,000</td>
<td>52 800</td>
</tr>
<tr>
<td>34th</td>
<td>M1</td>
<td>34,000</td>
<td>54 400</td>
</tr>
</tbody>
</table>

Table 2, 1st through 34th Maintenance for Service Schedule I Vehicles
Table 3, 35th through 68th Maintenance for Service Schedule I Vehicles

<table>
<thead>
<tr>
<th>Maint. No.</th>
<th>Required Maintenance Operation Interval</th>
<th>Service Date</th>
<th>Service I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Miles</td>
<td>km</td>
</tr>
<tr>
<td>35th</td>
<td>M1 and M2</td>
<td>35,000</td>
<td>56 000</td>
</tr>
<tr>
<td>36th</td>
<td>M1</td>
<td>36,000</td>
<td>57 600</td>
</tr>
<tr>
<td>37th</td>
<td>M1</td>
<td>37,000</td>
<td>59 200</td>
</tr>
<tr>
<td>38th</td>
<td>M1</td>
<td>38,000</td>
<td>60 800</td>
</tr>
<tr>
<td>39th</td>
<td>M1</td>
<td>39,000</td>
<td>62 400</td>
</tr>
<tr>
<td>40th</td>
<td>M1, M2, M3, and M4</td>
<td>40,000</td>
<td>64 000</td>
</tr>
<tr>
<td>41st</td>
<td>M1</td>
<td>41,000</td>
<td>65 600</td>
</tr>
<tr>
<td>42nd</td>
<td>M1</td>
<td>42,000</td>
<td>67 200</td>
</tr>
<tr>
<td>43rd</td>
<td>M1</td>
<td>43,000</td>
<td>68 800</td>
</tr>
<tr>
<td>44th</td>
<td>M1</td>
<td>44,000</td>
<td>70 400</td>
</tr>
<tr>
<td>45th</td>
<td>M1 and M2</td>
<td>45,000</td>
<td>72 000</td>
</tr>
<tr>
<td>46th</td>
<td>M1</td>
<td>46,000</td>
<td>73 600</td>
</tr>
<tr>
<td>47th</td>
<td>M1</td>
<td>47,000</td>
<td>75 200</td>
</tr>
<tr>
<td>48th</td>
<td>M1</td>
<td>48,000</td>
<td>76 800</td>
</tr>
<tr>
<td>49th</td>
<td>M1</td>
<td>49,000</td>
<td>78 400</td>
</tr>
<tr>
<td>50th</td>
<td>M1, M2, and M3</td>
<td>50,000</td>
<td>80 000</td>
</tr>
<tr>
<td>51st</td>
<td>M1</td>
<td>51,000</td>
<td>82 000</td>
</tr>
<tr>
<td>52nd</td>
<td>M1</td>
<td>52,000</td>
<td>83 700</td>
</tr>
<tr>
<td>53rd</td>
<td>M1</td>
<td>53,000</td>
<td>85 300</td>
</tr>
<tr>
<td>54th</td>
<td>M1</td>
<td>54,000</td>
<td>86 900</td>
</tr>
<tr>
<td>55th</td>
<td>M1 and M2</td>
<td>55,000</td>
<td>88 500</td>
</tr>
<tr>
<td>56th</td>
<td>M1</td>
<td>56,000</td>
<td>90 100</td>
</tr>
<tr>
<td>57th</td>
<td>M1</td>
<td>57,000</td>
<td>91 700</td>
</tr>
<tr>
<td>58th</td>
<td>M1</td>
<td>58,000</td>
<td>93 300</td>
</tr>
<tr>
<td>59th</td>
<td>M1</td>
<td>59,000</td>
<td>94 900</td>
</tr>
<tr>
<td>60th</td>
<td>M1, M2, M3, and M4</td>
<td>60,000</td>
<td>96 500</td>
</tr>
<tr>
<td>61st</td>
<td>M1</td>
<td>61,000</td>
<td>98 200</td>
</tr>
<tr>
<td>62nd</td>
<td>M1</td>
<td>62,000</td>
<td>99 800</td>
</tr>
<tr>
<td>63rd</td>
<td>M1</td>
<td>63,000</td>
<td>101 400</td>
</tr>
<tr>
<td>64th</td>
<td>M1</td>
<td>64,000</td>
<td>103 000</td>
</tr>
<tr>
<td>65th</td>
<td>M1 and M2</td>
<td>65,000</td>
<td>104 600</td>
</tr>
<tr>
<td>66th</td>
<td>M1</td>
<td>66,000</td>
<td>106 200</td>
</tr>
<tr>
<td>67th</td>
<td>M1</td>
<td>67,000</td>
<td>107 800</td>
</tr>
<tr>
<td>68th</td>
<td>M1</td>
<td>68,000</td>
<td>109 400</td>
</tr>
<tr>
<td>Maint. No.</td>
<td>Required Maintenance Operation Interval</td>
<td>Service Date</td>
<td>Service I</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>69th</td>
<td>M1</td>
<td>69,000</td>
<td>111 000</td>
</tr>
<tr>
<td>70th</td>
<td>M1, M2, and M3</td>
<td>70,000</td>
<td>112 700</td>
</tr>
<tr>
<td>71st</td>
<td>M1</td>
<td>71,000</td>
<td>114 300</td>
</tr>
<tr>
<td>72nd</td>
<td>M1</td>
<td>72,000</td>
<td>115 900</td>
</tr>
<tr>
<td>73rd</td>
<td>M1</td>
<td>73,000</td>
<td>117 500</td>
</tr>
<tr>
<td>74th</td>
<td>M1</td>
<td>74,000</td>
<td>119 100</td>
</tr>
<tr>
<td>75th</td>
<td>M1 and M2</td>
<td>75,000</td>
<td>120 700</td>
</tr>
<tr>
<td>76th</td>
<td>M1</td>
<td>76,000</td>
<td>122 300</td>
</tr>
<tr>
<td>77th</td>
<td>M1</td>
<td>77,000</td>
<td>123 900</td>
</tr>
<tr>
<td>78th</td>
<td>M1</td>
<td>78,000</td>
<td>125 500</td>
</tr>
<tr>
<td>79th</td>
<td>M1</td>
<td>79,000</td>
<td>127 100</td>
</tr>
<tr>
<td>80th</td>
<td>M1, M2, M3, and M4</td>
<td>80,000</td>
<td>128 700</td>
</tr>
<tr>
<td>81st</td>
<td>M1</td>
<td>81,000</td>
<td>130 400</td>
</tr>
<tr>
<td>82nd</td>
<td>M1</td>
<td>82,000</td>
<td>132 000</td>
</tr>
<tr>
<td>83rd</td>
<td>M1</td>
<td>83,000</td>
<td>134 000</td>
</tr>
<tr>
<td>84th</td>
<td>M1</td>
<td>84,000</td>
<td>135 200</td>
</tr>
<tr>
<td>85th</td>
<td>M1 and M2</td>
<td>85,000</td>
<td>137 000</td>
</tr>
<tr>
<td>86th</td>
<td>M1</td>
<td>86,000</td>
<td>138 400</td>
</tr>
<tr>
<td>87th</td>
<td>M1</td>
<td>87,000</td>
<td>140 000</td>
</tr>
<tr>
<td>88th</td>
<td>M1</td>
<td>88,000</td>
<td>141 600</td>
</tr>
<tr>
<td>89th</td>
<td>M1</td>
<td>89,000</td>
<td>143 200</td>
</tr>
<tr>
<td>90th</td>
<td>M1, M2, and M3</td>
<td>90,000</td>
<td>144 800</td>
</tr>
<tr>
<td>91st</td>
<td>M1</td>
<td>91,000</td>
<td>146 500</td>
</tr>
<tr>
<td>92nd</td>
<td>M1</td>
<td>92,000</td>
<td>148 100</td>
</tr>
<tr>
<td>93rd</td>
<td>M1</td>
<td>93,000</td>
<td>150 000</td>
</tr>
<tr>
<td>94th</td>
<td>M1</td>
<td>94,000</td>
<td>151 300</td>
</tr>
<tr>
<td>95th</td>
<td>M1 and M2</td>
<td>95,000</td>
<td>153 000</td>
</tr>
<tr>
<td>96th</td>
<td>M1</td>
<td>96,000</td>
<td>155 000</td>
</tr>
<tr>
<td>97th</td>
<td>M1</td>
<td>97,000</td>
<td>156 100</td>
</tr>
<tr>
<td>98th</td>
<td>M1</td>
<td>98,000</td>
<td>157 700</td>
</tr>
<tr>
<td>99th</td>
<td>M1</td>
<td>99,000</td>
<td>159 300</td>
</tr>
<tr>
<td>100th</td>
<td>M1, M2, M3, and M4</td>
<td>100,000</td>
<td>160 900</td>
</tr>
</tbody>
</table>

Table 4, 69th through 100th Maintenance for Service Schedule I Vehicles
<table>
<thead>
<tr>
<th>Maint. No.</th>
<th>Required Maintenance Operation Interval</th>
<th>Service Date</th>
<th>Miles</th>
<th>km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Initial Maintenance (IM)/M1</td>
<td>12,500</td>
<td>20 000</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>M1</td>
<td>25,000</td>
<td>40 000</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>M1</td>
<td>37,000</td>
<td>60 000</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>M1 and M2</td>
<td>50,000</td>
<td>80 000</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td>M1</td>
<td>62,000</td>
<td>100 000</td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>M1</td>
<td>75,000</td>
<td>120 000</td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td>M1</td>
<td>87,000</td>
<td>140 000</td>
<td></td>
</tr>
<tr>
<td>8th</td>
<td>M1, M2, and M3</td>
<td>100,000</td>
<td>160 000</td>
<td></td>
</tr>
<tr>
<td>9th</td>
<td>M1</td>
<td>112,000</td>
<td>180 000</td>
<td></td>
</tr>
<tr>
<td>10th</td>
<td>M1</td>
<td>125,000</td>
<td>200 000</td>
<td></td>
</tr>
<tr>
<td>11th</td>
<td>M1</td>
<td>137,000</td>
<td>220 000</td>
<td></td>
</tr>
<tr>
<td>12th</td>
<td>M1 and M2</td>
<td>150,000</td>
<td>240 000</td>
<td></td>
</tr>
<tr>
<td>13th</td>
<td>M1</td>
<td>162,000</td>
<td>260 000</td>
<td></td>
</tr>
<tr>
<td>14th</td>
<td>M1</td>
<td>175,000</td>
<td>280 000</td>
<td></td>
</tr>
<tr>
<td>15th</td>
<td>M1</td>
<td>187,000</td>
<td>300 000</td>
<td></td>
</tr>
<tr>
<td>16th</td>
<td>M1, M2, and M3</td>
<td>200,000</td>
<td>320 000</td>
<td></td>
</tr>
<tr>
<td>17th</td>
<td>M1</td>
<td>212,000</td>
<td>340 000</td>
<td></td>
</tr>
<tr>
<td>18th</td>
<td>M1</td>
<td>225,000</td>
<td>360 000</td>
<td></td>
</tr>
<tr>
<td>19th</td>
<td>M1</td>
<td>237,000</td>
<td>380 000</td>
<td></td>
</tr>
<tr>
<td>20th</td>
<td>M1 and M2</td>
<td>250,000</td>
<td>400 000</td>
<td></td>
</tr>
<tr>
<td>21st</td>
<td>M1</td>
<td>262,000</td>
<td>420 000</td>
<td></td>
</tr>
<tr>
<td>22nd</td>
<td>M1</td>
<td>275,000</td>
<td>440 000</td>
<td></td>
</tr>
<tr>
<td>23rd</td>
<td>M1</td>
<td>287,000</td>
<td>460 000</td>
<td></td>
</tr>
<tr>
<td>24th</td>
<td>M1, M2, M3, and M4</td>
<td>300,000</td>
<td>480 000</td>
<td></td>
</tr>
</tbody>
</table>

Table 5, 1st through 24th Maintenance for Service Schedule II Vehicles
IMPORTANT: At each Maintenance Operation Set, in addition to the maintenance operations listed here, perform all daily, weekly, and monthly maintenance operations listed in the "Pretrip and Post-Trip Inspection and Maintenance" chapter of the Western Star Driver’s Manual.

NOTE: Maintenance operations appearing in italics in this table are for noise emission control components. Numbers in this table are reference numbers matching those in the text of this manual.

<table>
<thead>
<tr>
<th>Maint. Oper. No.</th>
<th>Operation Description</th>
<th>Maintenance Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>01–01</td>
<td>Engine Noise Panel Inspection</td>
<td></td>
</tr>
<tr>
<td>01–02</td>
<td>Engine Belt Inspection</td>
<td></td>
</tr>
<tr>
<td>01–03</td>
<td>Packbrake® Inspection and Maintenance</td>
<td></td>
</tr>
<tr>
<td>01–04</td>
<td>Engine-Support Fasteners Check</td>
<td></td>
</tr>
<tr>
<td>09–01</td>
<td>Intake Piping Inspection</td>
<td></td>
</tr>
<tr>
<td>09–02</td>
<td>Air Cleaner Element Inspection and Replacement*</td>
<td></td>
</tr>
<tr>
<td>09–03</td>
<td>Charge Air Cooler Inspection</td>
<td></td>
</tr>
<tr>
<td>13–01</td>
<td>Air Compressor Inspection</td>
<td></td>
</tr>
<tr>
<td>15–01</td>
<td>Alternator and Starter Check</td>
<td></td>
</tr>
<tr>
<td>15–02</td>
<td>Battery Check</td>
<td></td>
</tr>
<tr>
<td>20–01</td>
<td>Coolant Inspection</td>
<td></td>
</tr>
<tr>
<td>20–02</td>
<td>Cooling System Inspection</td>
<td></td>
</tr>
<tr>
<td>20–03</td>
<td>Pressure/Filler Cap Test</td>
<td></td>
</tr>
<tr>
<td>20–04</td>
<td>Cooling System Pressure-Flush</td>
<td></td>
</tr>
<tr>
<td>25–01</td>
<td>Clutch Release Bearing Lubrication†</td>
<td></td>
</tr>
<tr>
<td>25–02</td>
<td>Clutch Release Cross-Shaft Lubrication</td>
<td></td>
</tr>
<tr>
<td>25–03</td>
<td>Sleeve Assembly Bronze Bushing Lubrication</td>
<td></td>
</tr>
<tr>
<td>25–04</td>
<td>Fluid Level Check, Hydraulic Clutch Control</td>
<td></td>
</tr>
<tr>
<td>25–05</td>
<td>Fluid Change, Hydraulic Clutch Control</td>
<td></td>
</tr>
<tr>
<td>26–01</td>
<td>Transmission Fluid Level Inspection</td>
<td></td>
</tr>
<tr>
<td>26–02</td>
<td>Manual Transmission Fluid Change</td>
<td></td>
</tr>
<tr>
<td>26–03</td>
<td>Manual Transmission Air Filter/Regulator Check, and Cleaning or Replacement</td>
<td></td>
</tr>
<tr>
<td>26–04</td>
<td>ESS Transmission Filter and Boot Inspection</td>
<td></td>
</tr>
<tr>
<td>26–05</td>
<td>Transmission Inspection</td>
<td></td>
</tr>
<tr>
<td>26–06</td>
<td>Allison and Eaton Fuller Transmission Breather Check</td>
<td></td>
</tr>
<tr>
<td>26–07</td>
<td>Allison Transmission Fluid and Filter Change‡</td>
<td></td>
</tr>
<tr>
<td>26–08</td>
<td>Detroit™ Automated Transmission Fluid Change and Magnetic Plug Cleaning</td>
<td></td>
</tr>
<tr>
<td>26–09</td>
<td>Detroit™ Automated Transmission Fluid Level Inspection</td>
<td></td>
</tr>
<tr>
<td>31–01</td>
<td>Fifth Wheel Inspection</td>
<td></td>
</tr>
<tr>
<td>31–02</td>
<td>Fifth Wheel Lubrication</td>
<td></td>
</tr>
</tbody>
</table>
Maintenance Operation Sets for Groups 00 through 88

<table>
<thead>
<tr>
<th>Maint. Oper. No.</th>
<th>Operation Description</th>
<th>Maintenance Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>31–03</td>
<td>Holland Fifth Wheel Sliding Mechanism Inspection</td>
<td>□ □ □</td>
</tr>
<tr>
<td>31–04</td>
<td>Frame Fastener Torque Check</td>
<td>□ □ □</td>
</tr>
<tr>
<td>31–05</td>
<td>Trailer Electrical Connector Lubrication</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>31–06</td>
<td>Premier 690 Coupling Inspection</td>
<td>□</td>
</tr>
<tr>
<td>32–01</td>
<td>Suspension Inspection</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>32–02</td>
<td>Suspension Lubrication</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>32–03</td>
<td>Suspension U-Bolt Torque Check</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>33–01</td>
<td>Knuckle Pin Lubrication§</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>33–02</td>
<td>Tie Rod Lubrication§</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>33–03</td>
<td>Tie Rod Inspection</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>33–04</td>
<td>Front Axle Wheel Bearing Lubrication</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>33–05</td>
<td>Front Drive Axle Lubricant Level Check</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>33–06</td>
<td>Front Drive Axle Lubricant Change</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>33–07</td>
<td>Wheel Alignment Check</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>33–08</td>
<td>Steer Axle Hub Cap Vent Plug Inspection</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>35–01</td>
<td>Drive Axle Lubricant Level Check</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>35–02</td>
<td>Two-Speed-Axle Shift Unit Lubricant Level Check</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>35–03</td>
<td>Drive Axle Breather Check</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>35–04</td>
<td>Drive Axle Lubricant Change</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>40–01</td>
<td>Wheel Nut and Rim Nut Torque Check</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>40–02</td>
<td>Tire Check</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>41–01</td>
<td>Driveline Inspection</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>41–02</td>
<td>Driveline Lubrication</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>42–02</td>
<td>Air Dryer Inspection</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>42–03</td>
<td>Air Dryer Desiccant Replacement¶</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>42–04</td>
<td>Alcohol Evaporator Cleaning and Inspection</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>42–05</td>
<td>Camshaft Bracket Lubrication</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>42–06</td>
<td>Slack Adjuster Lubrication</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>42–07</td>
<td>Brake Inspection</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>42–08</td>
<td>Versajust Slack Adjuster Inspection and Lubrication**</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>42–09</td>
<td>Bendix Automatic Drain Valve Operating and Leakage Tests††</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>46–01</td>
<td>Drag Link Inspection</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>46–02</td>
<td>Drag Link Lubrication</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>46–03</td>
<td>Power Steering Fluid and Filter Changing</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>46–04</td>
<td>Steering Shaft Lubrication</td>
<td>□ □ □ □</td>
</tr>
</tbody>
</table>
Maintenance Operation Sets for Groups 00 through 88

<table>
<thead>
<tr>
<th>Maint. Oper. No.</th>
<th>Operation Description</th>
<th>Maintenance Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>46–05</td>
<td>Power Steering Gear Lubrication</td>
<td>• • • • •</td>
</tr>
<tr>
<td>47–01</td>
<td>Fuel Filter Replacement</td>
<td>• • • • •</td>
</tr>
<tr>
<td>47–02</td>
<td>Fuel Separator Sight Bowl Cleaning and Element Replacement</td>
<td>• • •</td>
</tr>
<tr>
<td>47–03</td>
<td>Fuel Tank Band Nut Tightening</td>
<td>• • • • •</td>
</tr>
<tr>
<td>49–01</td>
<td>Exhaust System Inspection</td>
<td>• • • • •</td>
</tr>
<tr>
<td>49–02</td>
<td>CAT CGI Bellows Replacement</td>
<td>•</td>
</tr>
<tr>
<td>60–01</td>
<td>Cab Suspension Inspection</td>
<td>• • •</td>
</tr>
<tr>
<td>60–02</td>
<td>Mirror Folding Check</td>
<td>• • •</td>
</tr>
<tr>
<td>60–03</td>
<td>Aerodynamic Component Inspection</td>
<td>• • • • •</td>
</tr>
<tr>
<td>72–01</td>
<td>Door Seal, Door Latch, and Door Hinge Lubrication</td>
<td>• • • • •</td>
</tr>
<tr>
<td>83–01</td>
<td>Air Conditioner Inspection</td>
<td>• • •</td>
</tr>
<tr>
<td>83–02</td>
<td>HVAC Air Filter Cleaning and Replacement</td>
<td>• • • • •</td>
</tr>
<tr>
<td>88–01</td>
<td>Hood Rear Support Lubrication</td>
<td>• • • • •</td>
</tr>
</tbody>
</table>

* For 5700 models, complete this procedure every 300,000 miles (485,000 km).
† For Eaton Easy Pedal Advantage clutches, the interval is 50,000 miles (161,000 km) for linehaul applications.
‡ Intervals vary by transmission model, application, lubricant, and use. Contact Allison to determine the precise interval(s) for the transmission model and lubricant used on the vehicle.
§ For Detroit axles, complete this procedure once a year or at the following applicable interval, whichever comes first: every 5000 miles (8000 km) for Schedule I vehicles; or every 100,000 miles (161,000 km) for Schedule II vehicles.
¶ If equipped with an oil-coalescing desiccant cartridge, replace the cartridge once a year, regardless of mileage. Otherwise use the M4 maintenance interval.
** Complete this procedure every 25,000 miles (40,225 km), 3 months, or 500 operating hours, whichever comes first.
†† The automatic drain valve should be inspected every 6 months or 1500 operating hours, whichever comes first.

Table 6, Maintenance Operation Sets for Groups 00 through 88
Initial Maintenance (IM) Operations: 00–05

IMPORTANT: After performing all operations listed in this table, perform all daily and weekly maintenance operations listed in the "Pretrip Inspection and Daily Maintenance" chapter of the Western Star Driver's Manual.

NOTE: Numbers in this table are reference numbers matching those in the text of this manual.

<table>
<thead>
<tr>
<th>Maintenance Operation Number</th>
<th>Operation Description</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>00–07</td>
<td>MI Maintenance Interval Operations Table</td>
<td></td>
</tr>
<tr>
<td>15–01</td>
<td>Alternator and Starter Check</td>
<td></td>
</tr>
<tr>
<td>15–02</td>
<td>Battery Check</td>
<td></td>
</tr>
<tr>
<td>26–02</td>
<td>Manual Transmission Fluid Change</td>
<td></td>
</tr>
<tr>
<td>26–03</td>
<td>Manual Transmission Air Filter/Regulator Check, and Cleaning or Replacement</td>
<td></td>
</tr>
<tr>
<td>31–04</td>
<td>Frame Fastener Torque Check</td>
<td></td>
</tr>
<tr>
<td>31–06</td>
<td>Premier 690 Coupling Inspection</td>
<td></td>
</tr>
<tr>
<td>32–03</td>
<td>Suspension U-Bolt Torque Check</td>
<td></td>
</tr>
<tr>
<td>33–06</td>
<td>Front Drive Axle Lubricant Change</td>
<td></td>
</tr>
<tr>
<td>33–07</td>
<td>Wheel Alignment Check</td>
<td></td>
</tr>
<tr>
<td>35–04</td>
<td>Drive Axle Lubricant Change</td>
<td></td>
</tr>
<tr>
<td>42–09</td>
<td>Bendix Automatic Drain Valve Operating and Leakage Tests*</td>
<td></td>
</tr>
</tbody>
</table>

* The automatic drain valve should be inspected every 6 months or 1500 operating hours, whichever comes first.

Table 7, Initial Maintenance (IM) Operations for all Service Schedules
Table 8 summarizes all operations that must be performed to complete Lubrication and Fluid Level Check Operation 00–06 called for as an M1 maintenance interval for Service Schedule I and II vehicles. Maintenance operation numbers given in the table are reference numbers used to help you find detailed instructions in the manual on the lubrication or fluid checking.

<table>
<thead>
<tr>
<th>Maintenance Operation No.</th>
<th>Operation Description</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–01</td>
<td>Clutch Release Bearing Lubrication*</td>
<td></td>
</tr>
<tr>
<td>25–02</td>
<td>Clutch Release Cross-Shaft Lubrication</td>
<td></td>
</tr>
<tr>
<td>25–03</td>
<td>Sleeve Assembly Bronze Bushing Lubrication</td>
<td></td>
</tr>
<tr>
<td>25–04</td>
<td>Fluid Level Check, Hydraulic Clutch Control</td>
<td></td>
</tr>
<tr>
<td>26–01</td>
<td>Transmission Fluid Level Inspection</td>
<td></td>
</tr>
<tr>
<td>31–02</td>
<td>Fifth Wheel Lubrication</td>
<td></td>
</tr>
<tr>
<td>31–05</td>
<td>Trailer Electrical Connector Lubrication</td>
<td></td>
</tr>
<tr>
<td>32–02</td>
<td>Suspension Lubrication</td>
<td></td>
</tr>
<tr>
<td>33–01</td>
<td>Knuckle Pin Lubrication†</td>
<td></td>
</tr>
<tr>
<td>33–02</td>
<td>Tie Rod Lubrication†</td>
<td></td>
</tr>
<tr>
<td>33–04</td>
<td>Front Axle Wheel Bearing Lubrication</td>
<td></td>
</tr>
<tr>
<td>33–05</td>
<td>Front Drive Axle Lubricant Level Check</td>
<td></td>
</tr>
<tr>
<td>35–01</td>
<td>Drive Axle Lubricant Level Check</td>
<td></td>
</tr>
<tr>
<td>41–02</td>
<td>Driveline Lubrication</td>
<td></td>
</tr>
<tr>
<td>42–05</td>
<td>Camshaft Bracket Lubrication</td>
<td></td>
</tr>
<tr>
<td>42–06</td>
<td>Slack Adjuster Lubrication</td>
<td></td>
</tr>
<tr>
<td>46–02</td>
<td>Drag Link Lubrication</td>
<td></td>
</tr>
<tr>
<td>46–04</td>
<td>Steering Shaft Lubrication</td>
<td></td>
</tr>
<tr>
<td>46–05</td>
<td>Power Steering Gear Lubrication</td>
<td></td>
</tr>
<tr>
<td>72–01</td>
<td>Door Seal, Door Latch, and Door Hinge Lubrication</td>
<td></td>
</tr>
<tr>
<td>88–01</td>
<td>Hood Rear Support Lubrication</td>
<td></td>
</tr>
</tbody>
</table>

* For Eaton Easy Pedal Advantage clutches, the interval is 50,000 miles (161 000 km) for linehaul applications.

† For Detroit axles, complete this procedure once a year or at the following applicable interval, whichever comes first: every 5000 miles (8000 km) for Schedule I vehicles; or every 100,000 miles (161 000 km) for Schedule II vehicles.

Table 8, Lubrication and Fluid Level Check for Service Schedules I and II
The M1 Maintenance Interval Operations table lists all maintenance operations that are to be performed at the M1 maintenance interval. Maintenance operation numbers are reference numbers used to help you find detailed instructions in this manual on the maintenance operations to be performed.

IMPORTANT: After performing all operations listed in this table, perform all daily, weekly, and monthly maintenance operations listed in the "Pretrip and Post-Trip Inspections and Maintenance" chapter of the Western Star® Driver’s Manual.

<table>
<thead>
<tr>
<th>Maintenance Operation Number</th>
<th>Operation Description</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>00–06</td>
<td>Lubrication and Fluid Level Check</td>
<td></td>
</tr>
<tr>
<td>13–01</td>
<td>Air Compressor Inspection</td>
<td></td>
</tr>
<tr>
<td>20–01</td>
<td>Coolant Inspection</td>
<td></td>
</tr>
<tr>
<td>26–06</td>
<td>Allison and Eaton Fuller Transmission Breather Check</td>
<td></td>
</tr>
<tr>
<td>31–01</td>
<td>Fifth Wheel Inspection</td>
<td></td>
</tr>
<tr>
<td>31–06</td>
<td>Premier 690 Coupling Inspection</td>
<td></td>
</tr>
<tr>
<td>32–01</td>
<td>Suspension Inspection</td>
<td></td>
</tr>
<tr>
<td>33–03</td>
<td>Tie Rod Inspection</td>
<td></td>
</tr>
<tr>
<td>33–08</td>
<td>Steer Axle Hub Cap Vent Plug Inspection</td>
<td></td>
</tr>
<tr>
<td>35–03</td>
<td>Drive Axle Breather Check</td>
<td></td>
</tr>
<tr>
<td>40–01</td>
<td>Wheel Nut and Rim Nut Torque Check</td>
<td></td>
</tr>
<tr>
<td>40–02</td>
<td>Tire Check</td>
<td></td>
</tr>
<tr>
<td>41–01</td>
<td>Driveline Inspection</td>
<td></td>
</tr>
<tr>
<td>42–02</td>
<td>Air Dryer Inspection</td>
<td></td>
</tr>
<tr>
<td>42–03</td>
<td>Air Dryer Desiccant Replacement (with an oil-coalescing desiccant cartridge)*</td>
<td></td>
</tr>
<tr>
<td>42–07</td>
<td>Brake Inspection</td>
<td></td>
</tr>
<tr>
<td>42–08</td>
<td>Versajust Slack Adjuster Inspection and Lubrication†</td>
<td></td>
</tr>
<tr>
<td>42–09</td>
<td>Bendix Automatic Drain Valve Operating and Leakage Tests‡</td>
<td></td>
</tr>
<tr>
<td>46–01</td>
<td>Drag Link Inspection</td>
<td></td>
</tr>
<tr>
<td>47–01</td>
<td>Fuel Filter Replacement</td>
<td></td>
</tr>
<tr>
<td>47–02</td>
<td>Fuel Tank Band Nut Tightening</td>
<td></td>
</tr>
<tr>
<td>49–01</td>
<td>Exhaust System Inspection</td>
<td></td>
</tr>
<tr>
<td>60–03</td>
<td>Aerodynamic Component Inspection</td>
<td></td>
</tr>
<tr>
<td>83–02</td>
<td>HVAC Air Filter Cleaning and Replacement</td>
<td></td>
</tr>
</tbody>
</table>

* If equipped with an oil-coalescing desiccant cartridge, replace the cartridge once a year, regardless of mileage. Otherwise use the M4 maintenance interval.
† Complete this procedure every 25,000 miles (40,225 km), 3 months, or 500 operating hours, whichever comes first.
‡ The automatic drain valve should be inspected every 6 months or 1500 operating hours, whichever comes first.

Table 9, M1 Maintenance Interval Operations for Service Schedules I and II
The M2 Maintenance Interval Operations table lists all maintenance operations that are to be performed at the M2 maintenance interval. Maintenance operation numbers are reference numbers used to help you find detailed instructions in this manual on the maintenance operations to be performed. Perform all M1 maintenance interval operations at the M2 maintenance interval.

NOTE: Maintenance operations appearing in italics in this table are for noise emission control components.

<table>
<thead>
<tr>
<th>Maintenance Operation Number</th>
<th>Operation Description</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>00–07</td>
<td>M1 Maintenance Interval Operations Table</td>
<td></td>
</tr>
<tr>
<td>01–03</td>
<td>Pacbrake® Inspection and Maintenance</td>
<td></td>
</tr>
<tr>
<td>20–02</td>
<td>Cooling System Inspection</td>
<td></td>
</tr>
<tr>
<td>20–03</td>
<td>Pressure/Filler Cap Test</td>
<td></td>
</tr>
<tr>
<td>26–02</td>
<td>Manual Transmission Fluid Change</td>
<td></td>
</tr>
<tr>
<td>26–03</td>
<td>Manual Transmission Air Filter/Regulator Check, and Cleaning or Replacement</td>
<td></td>
</tr>
<tr>
<td>26–07</td>
<td>Allison Transmission Fluid and Filter Change*</td>
<td></td>
</tr>
<tr>
<td>31–03</td>
<td>Holland Fifth Wheel Sliding Mechanism Inspection</td>
<td></td>
</tr>
<tr>
<td>47–02</td>
<td>Fuel Separator Sight Bowl Cleaning and Element Replacement</td>
<td></td>
</tr>
<tr>
<td>60–01</td>
<td>Cab Suspension Inspection</td>
<td></td>
</tr>
<tr>
<td>83–01</td>
<td>Air Conditioner Inspection</td>
<td></td>
</tr>
</tbody>
</table>

* Intervals vary by transmission model, application, lubricant, and use. Contact Allison to determine the precise interval(s) for the transmission model and lubricant used on the vehicle.

Table 10, M2 Maintenance Interval Operations for Service Schedules I and II
The M3 Maintenance Interval Operations table lists all maintenance operations that are to be performed at the M3 maintenance interval. Maintenance operation numbers are reference numbers used to help you find detailed instructions in this manual on the maintenance operations to be performed. Perform all maintenance interval operations in M1 and M2 when performing M3 maintenance interval operations.

NOTE: Maintenance operations appearing in italics in this table are for noise emission control components.

M3 Maintenance Interval Operations for Service Schedules I and II

<table>
<thead>
<tr>
<th>Maintenance Operation Number</th>
<th>Operation Description</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>00–07</td>
<td>M1 Maintenance Interval Operations Table</td>
<td></td>
</tr>
<tr>
<td>00–08</td>
<td>M2 Maintenance Interval Operations Table</td>
<td></td>
</tr>
<tr>
<td>01–01</td>
<td>Engine Noise Panel Inspection</td>
<td></td>
</tr>
<tr>
<td>01–02</td>
<td>Engine Belt Inspection</td>
<td></td>
</tr>
<tr>
<td>01–04</td>
<td>Engine Support Fasteners Check</td>
<td></td>
</tr>
<tr>
<td>09–01</td>
<td>Intake Piping Inspection</td>
<td></td>
</tr>
<tr>
<td>09–02</td>
<td>Air Cleaner Element Inspection and Replacement*</td>
<td></td>
</tr>
<tr>
<td>09–03</td>
<td>Charge Air Cooler Inspection</td>
<td></td>
</tr>
<tr>
<td>15–01</td>
<td>Alternator and Starter Check</td>
<td></td>
</tr>
<tr>
<td>15–02</td>
<td>Battery Check</td>
<td></td>
</tr>
<tr>
<td>26–08</td>
<td>Detroit™ Automated Transmission Fluid Change and Magnetic Plug Cleaning</td>
<td></td>
</tr>
<tr>
<td>26–09</td>
<td>Detroit™ Automated Transmission Fluid Level Inspection</td>
<td></td>
</tr>
<tr>
<td>31–04</td>
<td>Frame Fastener Torque Check</td>
<td></td>
</tr>
<tr>
<td>32–03</td>
<td>Suspension U-Bolt Torque Check</td>
<td></td>
</tr>
<tr>
<td>33–06</td>
<td>Front Drive Axle Lubricant Change</td>
<td></td>
</tr>
<tr>
<td>35–02</td>
<td>Two-Speed-Axle Shift Unit Lubricant Level Check</td>
<td></td>
</tr>
<tr>
<td>35–04</td>
<td>Drive Axle Lubricant Change</td>
<td></td>
</tr>
<tr>
<td>42–04</td>
<td>Alcohol Evaporator Cleaning and Inspection</td>
<td></td>
</tr>
<tr>
<td>60–02</td>
<td>Mirror Folding Check</td>
<td></td>
</tr>
</tbody>
</table>

* For 5700 models, complete this procedure every 300,000 miles (485 000 km).
The M4 Maintenance Interval Operations table lists all maintenance operations that are to be performed at the M4 maintenance interval. Maintenance operation numbers are reference numbers used to help you find detailed instructions in this manual on the maintenance operations to be performed. Perform all maintenance interval operations in M1, M2, and M3 when performing M4 maintenance interval operations.

<table>
<thead>
<tr>
<th>Maintenance Operation Number</th>
<th>Operation Description</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>00–07</td>
<td>M1 Maintenance Interval Operations Table</td>
<td></td>
</tr>
<tr>
<td>00–08</td>
<td>M2 Maintenance Interval Operations Table</td>
<td></td>
</tr>
<tr>
<td>00–09</td>
<td>M3 Maintenance Interval Operations Table</td>
<td></td>
</tr>
<tr>
<td>20–04</td>
<td>Cooling System Pressure Flush</td>
<td></td>
</tr>
<tr>
<td>25–05</td>
<td>Fluid Change, Hydraulic Clutch Control</td>
<td></td>
</tr>
<tr>
<td>26–04</td>
<td>ESS Transmission Filter and Boot Inspection</td>
<td></td>
</tr>
<tr>
<td>26–05</td>
<td>Transmission Inspection</td>
<td></td>
</tr>
<tr>
<td>42–03</td>
<td>Air Dryer Desiccant Replacement</td>
<td></td>
</tr>
<tr>
<td>46–03</td>
<td>Power Steering Fluid and Filter Changing</td>
<td></td>
</tr>
<tr>
<td>49–02</td>
<td>CAT CGI Bellows Replacement</td>
<td></td>
</tr>
</tbody>
</table>

Table 12, M4 Maintenance Interval Operations for Service Schedules I and II
General Information

Federal Law, Part 205: Transportation Equipment Noise Emission Controls

Part 205, Transportation Equipment Noise Emission Controls, requires the vehicle manufacturer to furnish with each new vehicle, such written instructions for the proper maintenance, use, and repair of the vehicle by the ultimate purchaser to provide reasonable assurance of the elimination or minimization of noise emission control degradation throughout the life of the vehicle. In compliance with the law, the noise emission controls maintenance information in each applicable group of this manual, in conjunction with the vehicle service manual, provides these instructions to owners.

Recommendations for Replacement Parts

Replacement parts, used for the maintenance or repair of noise emission controls, should be genuine Western Star parts. If other than genuine Western Star parts are used, for replacement or repair of components affecting noise emission control, the owner should be sure that such parts are warranted by their manufacturer or to be equivalent to the genuine Western Star parts in performance and durability.

Western Star Noise Emission Controls Warranty

Refer to the vehicle owner’s warranty information book for warranty information concerning noise emission controls.

Tampering With Noise Controls is Prohibited

Federal law prohibits the following acts or the causing thereof:

1. The removal or rendering inoperative, by any person (other than for the purposes of maintenance, repair, or replacement) of any device or element of design incorporated into any new vehicle for the purpose of noise control prior to its sale or delivery to the ultimate purchaser or while the vehicle is in use.

2. The use of the vehicle after such a device or element of design for the purpose of noise control has been removed or rendered inoperative by any person.

Among those acts presumed to constitute tampering are the acts listed below:

1. The removal of engine sound-suppression panels.

2. The removal of cab tunnel or hood sound-suppression panels.

3. The removal of, or rendering inoperative, the engine speed governor so as to allow the engine speed to exceed the manufacturer’s specifications.

4. The removal of, or rendering inoperative, the engine fan clutch, including bypassing the control on any thermostatic fan drive to cause it to operate continuously.

5. The removal of the fan shroud.

6. The removal of, or rendering inoperative, engine exhaust components, including the exhaust pipe clamping.

7. The removal of air intake components.

Maintenance Instructions

Scheduled intervals are in the maintenance tables in this group. A “Verification of Inspections Log (Groups 01, 20, and 49)” follows. These logs should be filled in each time the noise emission controls on the vehicle are maintained, repaired, or replaced.
Verification of Inspections Log

Verification of Inspections Log (Group 01) Engine Rear Supports and Engine Noise Panels

<table>
<thead>
<tr>
<th>Date</th>
<th>Mileage</th>
<th>Item</th>
<th>Cost</th>
<th>Maintenance Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13, Verification of Inspections Log (Group 01) Engine Rear Supports and Engine Noise Panels

Verification of Inspections Log (Group 20) Fan Drive

<table>
<thead>
<tr>
<th>Date</th>
<th>Mileage</th>
<th>Item</th>
<th>Cost</th>
<th>Maintenance Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 14, Verification of Inspections Log (Group 20) Fan Drive
Verification of Inspections Log (Group 49) Exhaust System Components

<table>
<thead>
<tr>
<th>Date</th>
<th>Mileage</th>
<th>Item</th>
<th>Cost</th>
<th>Maintenance Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 15, Verification of Inspections Log (Group 49) Exhaust System Components
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Belt Inspection</td>
<td>01–02</td>
</tr>
<tr>
<td>Engine Noise Panel Inspection (Noise Emission Control)</td>
<td>01–01</td>
</tr>
<tr>
<td>Engine-Support Fasteners Check (Noise Emission Control)</td>
<td>01–04</td>
</tr>
<tr>
<td>Pacbrake® Inspection and Maintenance</td>
<td>01–03</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>01–00</td>
</tr>
</tbody>
</table>
01–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

01–01 Engine Noise Panel Inspection (Noise Emission Control)

If equipped, inspect for torn engine panels. See Fig. 1 for Caterpillar noise panel locations. If the panels are torn, contact your Western Star dealer to have them replaced. Cummins M11, N14, ISC, and ISL engines, and Detroit Diesel Series 60 and DD13 engines do not have engine noise panels.

01–02 Engine Belt Inspection

Belt and Pulley Inspection

Worn or loose drive belts may cause engine overheating or loss of alternator power. Replace the drive belt if any conditions described in Fig. 2 are found. To inspect a belt, gently twist it to view the belt sidewalls and bottom.

1. Inspect the belt contact surfaces for chips, flaking, cracks, discoloration, and other damage. See Fig. 2.

 IMPORTANT: For EPDM rubber drive belts, do not rely on cracking as an indicator of belt wear. EPDM rubber drive belts resist cracking better than neoprene belts. A better indicator of wear on EPDM belts is material loss.

2. For EPDM belts, check the belt for material loss, which causes the belt to seat further down in the pulley and to ride directly on the pulley tips. See Fig. 3.

3. Inspect the pulleys for excessive play or wobble. Excessive play or wobble indicates a failure of the pulley bearing. Check for belt squealing or squeaking. Replace the bearings as necessary.

 NOTE: If it is difficult to distinguish the location of a supposed bearing noise, place a stethoscope on the component being checked, not the pulley, to isolate the area from outside interference.

4. Inspect all pulleys for foreign objects, oil, or grease in the grooves.

Belt Tension Inspection

Some V-belts use a threaded adjustment, and the ONLY accurate way to check belt tension is to use a belt tension gauge. See your Western Star dealer for this type of adjustment.

Serpentine belts are tensioned by spring-loaded idler pulleys that are usually maintenance free. Uneven belt wear can indicate a loose, worn out, or bad bearing on the auto tensioner. A build up of dirt or grime around the front bearing surface of the wheel can indicate a future bearing failure due to inadequate lubrication.
Caterpillar

On Caterpillar engines, there is a red and green decal on the side of the idler arm mount. See Fig. 4. A properly tensioned belt is indicated by the shoulder of the idler arm aligned with the green zone of the decal. As the belt stretches, the shoulder will drift into the red zone. If the idler arm shoulder moves into the red zone, the belt needs to be replaced.

Cummins

On Cummins engines, a properly tensioned belt is indicated by the stop bar being in the center between the idler arm stops. See Fig. 5. As the belt stretches, the idler arm stop will rotate to the stop bar. If the idler arm stop has rotated to contact the stop bar, the belt needs to be replaced.

Detroit Diesel Series 60

The idler arm pivot on Detroit Diesel Series 60 engines has a pointer cast into the arm. See Fig. 6. This pointer should align with the V-groove mark at the rear of the mount, when belt tension is correct. As the belt stretches, the pointer will drift to the left of the V-groove. If the pointer is moved past the end of the V-groove, the belt needs to be replaced.

Belt Routing

Refer to the following diagrams for belt routings on the various engines.

- **Caterpillar:**
 - See Fig. 7 for CAT 3126B model.
 - See Fig. 8 for CAT C10 and C12 models.
 - See Fig. 9 for CAT C15 and C16 models.

- **Cummins:**
 - See Fig. 10 for Cummins ISX Signature 600 model, pre-2007.
 - See Fig. 11 for Cummins ISM model.
 - See Fig. 12 for Cummins N14 model.
 - See Fig. 13 for Cummins ISX models, 2007 or later.
 - See Fig. 14 for Cummins ISC and ISL models.

- **Detroit Diesel:**
 - See Fig. 15 for DD Series 60 model.
 - See Fig. 16 for DD 13/15/16 models.

01–03 Pacbrake® Inspection and Maintenance

With frequent use, the Pacbrake exhaust brake will operate maintenance-free. If the vehicle is used inconsistently or seasonally, it will be necessary to perform preventative maintenance. If the vehicle is exposed to excess moisture, or is used only for periodical or seasonal use, perform the following steps.

1. With the engine off, using any oil-free or non-petroleum-based high-heat lubricant, spray or coat a sufficient amount on the restrictor valve shaft and the attaching locations at each end of the actuation cylinder.

2. With your hands or a pair of pliers, motion the valve several times to distribute the lubricant down the shaft and the attaching locations.

NOTE: Operation of the Pacbrake could be affected by starting the engine and idling for short periods of time. During a cold engine start-up, moisture occurs in the engine and exhaust system that creates a corrosion hazard. The brake housing may trap water in the valve shaft bore, causing a corrosion hazard. The brake housing may trap water in the valve shaft bore, causing corrosion resulting in an improper or non-functioning brake. If it is necessary to periodically start the engine, attain normal operating temperatures before shutting the engine down.

01–04 Engine-Support Fasteners Check (Noise Emission Control)

Front and rear engine supports for vehicles built from January 2007 require no periodic maintenance. Mounts should be inspected when the engine is removed for service. For vehicles manufactured prior to January 2007, perform the following check.

Check the rear engine-support fasteners (see Fig. 17, Ref. 3) for tightness. Tighten the 5/8-inch fasteners 150 to 180 lbf-ft (203 to 244 N-m).

Check the front engine-support fasteners for tightness. Tighten the 3/4-inch fasteners 260 to 310 lbf-ft (350 to 420 N-m).
NOTE: At engine overhaul, and whenever the engine has been removed, inspect the lower and upper isolators (Refs. 6 and 7), and replace them if they are worn.

Fig. 2, Damaged Belts

1. Abrasion
2. Chunk-out
3. Improper Install
4. Cracking
5. Pilling
6. Uneven Rib Wear
7. Misalignment
8. Gravel Penetration
A. New Belt
B. Worn Belt
C. Material loss results in belt riding directly on pulley tips.

Fig. 3, EPDM Belt Wear

A. Shoulder
1. Spring-Loaded Tensioner
2. Label Green Zone

Fig. 4, Caterpillar Self-Tensioner

1. Stop Bar
2. Idler Arm Stops

Fig. 5, Cummins Self-Tensioner
1. V-Groove
2. Pointer

Fig. 6, Detroit Diesel Self-Tensioner

1. Fan Clutch
2. Air Conditioning Compressor
3. Alternator
4. Spring-Loaded Tensioner

Fig. 7, Caterpillar 3126B

1. Fan Clutch
2. Air Conditioning Compressor
3. Alternator
4. Spring-Loaded Tensioner

Fig. 8, Caterpillar C10 and C12

1. Fan Clutch
2. Air Conditioning Compressor
3. Alternator

Fig. 9, Caterpillar C15 and C16
1. Fan Clutch
2. Air Conditioning Compressor
3. Alternator
4. Spring-Loaded Tensioner

Fig. 10, Cummins ISX Signature 600 (pre-2007)

Fig. 11, Cummins ISM

Fig. 12, Cummins N14
1. Fan Belt
2. Alternator
3. AC Compressor

Fig. 13, Cummins ISX (2007 or later)

1. Spring Tensioner
2. Alternator Pulley
3. AC Compressor
4. Fan Clutch
5. Drive Belt
6. Crank Shaft Pulley

Fig. 14, Cummins ISC/ISL
Fig. 15, Detroit Diesel Series 60

1. Alternator
2. AC Belt
3. Air Conditioning Compressor
4. Fan Clutch
5. Fan Belt
6. Spring-Loaded Tensioner

Fig. 16, DD 13/15/16

1. Front Belt
2. Rear Belt
3. AC Compressor
4. Spring-Loaded Tensioner
5. Fan Clutch
6. Water Pump
1. Transmission Housing
2. Transmission Nodal Mount Bracket
3. Bolt, 5/8–18 x 4
4. Frame Bracket
5. Nut, 5/8–18
6. Lower Isolator
7. Upper Isolator

Fig. 17, Rear Engine-Support
Title of Maintenance Operation (MOP)

<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Cleaner Element Inspection and Replacement</td>
<td>09–02</td>
</tr>
<tr>
<td>Charge Air Cooler Inspection</td>
<td>09–03</td>
</tr>
<tr>
<td>Intake Piping Inspection</td>
<td>09–01</td>
</tr>
</tbody>
</table>
09–01 Intake Piping Inspection

Engine-Mounted Air Cleaner, 5700 Models

1. Ensure that the mounting fasteners for the air cleaner housing are tight. See Fig. 1.
2. Check the tightness and condition of the clamping hardware. The hose clamps should be tightened 40 lbf-in (4.5 N-m).
3. Ensure that the clamps are properly indexed.
4. Check the intake ducting for abrasions, cracks, and holes. Replace as needed.

Frontwall-Mounted Air Cleaner, 4700 Models

1. Ensure that the fasteners for the air cleaner element and air cleaner housing are tight. See Fig. 2.
2. Check the tightness and condition of the clamping hardware. The molded-duct-to-air-cleaner and molded-duct-to-elbow clamps should be tightened 40 lbf-in (4.5 N-m). The elbow-duct-to-turbo clamp should be tightened 90 lbf-in (10.2 N-m).
3. Ensure that the molded-duct-to-air-cleaner clamp is properly indexed.
4. Check the intake ducting for abrasions, cracks, and holes. Replace as needed.

Cowl-Mounted Air Cleaner

1. Check the connections between the plastic or aluminum piping and the rubber elbows. See Fig. 3.
2. Check the tightness and condition of the clamping hardware. Clamps at rubber-to-plastic duct connections should be tightened 39 to 41 lbf-in (440 to 460 N-cm), and clamps at rubber-to-metal duct connections should be tightened 90 to 100 lbf-in (1015 to 1130 N-cm).
3. Inspect the mating surfaces of the plastic or aluminum pipes. If it appears that the rubber elbow has moved on the plastic pipe, or if the hose clamps were loose, disassemble for further inspection.
4. After disassembly of the plastic pipe from the rubber connection elbow, inspect the ends of the pipe for evidence of the rubber elbow rubbing on it. If chaffing marks are visible replace the worn pipe. Wipe any dust from the inside of the pipe.
5. Check the inside of the rubber elbow for wear and contamination. If the rubber elbow is reusable, clean it internally with a shop towel, or soap and water. Blow-dry the elbow as needed, and install it.
6. Check the condition of the gear clamp. If wear is evident, replace the gear clamp with a constant-torque clamp. Constant-torque clamps should be
used if a vehicle is routinely exposed to rough road conditions or off-road applications.

7. Check the two band clamps that hold the air cleaner in place on the cowl. Ensure the canister has not slipped downwards. If this condition is present, loosen the two band clamp bolts and slide the canister upward until the outlet pipe is properly aligned with the opening in the cowl.

8. Inspect the alignment and fit of the rubber elbow that passes through the cowl and attaches the intake duct to the canister outlet pipe. Adjust as necessary to ensure a proper connection and tighten the clamps as follows: clamps at rubber-to-plastic duct connections should be tightened 39 to 41 lbf\(\cdot \)in (440 to 460 N\(\cdot \)cm), and clamps at rubber-to-metal duct connections should be tightened 90 to 100 lbf\(\cdot \)in (1015 to 1130 N\(\cdot \)cm). Do not over-tighten the clamps.

Frontwall-Mounted Air Cleaner, Non–4700 Models

This style of air intake system has the air cleaner element mounted horizontally across the left side of the firewall. The air intake is through ducting built into the hood and routed into the top of the air cleaner canister. See Fig. 4.

1. Check that the bolts on the canister mounting brackets are tight.

2. Check the mounting angle of the air cleaner canister inlet boot. It must be rotated forward slightly to ensure a correct seal to the hood intake duct. Inspect the hood and boot contact points for proper contact as evident by the polished area on the hood where the boot contacts it.

3. Check the connection points of the entire intake system to ensure the alignment of the rubber hoses to the charge air cooler pipe connections are correct. Check the piping for evidence of movement at the joint connections.

4. Check the tightness and condition of the clamping hardware. Clamps at rubber-to-plastic duct connections should be tightened 39 to 41 lbf\(\cdot \)in (440 to 460 N\(\cdot \)cm), and clamps at rubber-to-metal duct connections should be tightened 90 to 100 lbf\(\cdot \)in (1015 to 1130 N\(\cdot \)cm). Replace any clamps that are corroded or fail to operate smoothly when tightened.
09–02 Air Cleaner Element Inspection and Replacement

NOTICE

Do not use aftermarket air-cleaner elements. Aftermarket air-cleaner elements may not seal the housing correctly, which can lead to engine damage and potentially the loss of warranty. When replacing an air-cleaner element, use only the part listed in PartsPro for the serial number of the vehicle.

Engine-Mounted Air Cleaner, 5700 Models

For an installation diagram of the engine-mounted air cleaner used on 5700 models, see Fig. 5.

Restriction of air flow through the air cleaner element is measured at the tap in the air cleaner outlet. Check the restriction indicator at the air cleaner or in the cab if the vehicle is equipped with a dash-mounted restriction gauge.

Vehicles may be equipped with either a manual-reset restriction indicator with graduations (Fig. 6), or a go/no-go restriction indicator without graduations (Fig. 7).

1. Inspect the air restriction indicator to see if air restriction equals or exceeds the maximum allowable restriction. For instructions, see Group 09 of the Western Star Workshop Manual.

2. Inspect the air cleaner housing for cracks, leaks, and any other damage. If the air cleaner housing or element is damaged, replace it.
IMPORTANT: Each time the air cleaner housing is replaced, perform the procedures in MOP 13–01.

3. Check the inserts at all four assembly fastener locations (see Fig. 8). Each insert should protrude from the housing as shown in Fig. 9.

 If the head/flange of any of the threaded inserts is flush with or countersunk into the housing, replace the air cleaner assembly. See Section 09.05 of the Western Star Workshop Manual for replacement instructions.

4. Inspect the forward and rear mounting isolators (see Fig. 5) for damage. Ensure the bonds between the rubber and the steel plates are completely intact. See Fig. 10.

5. If necessary, replace the air cleaner element. For air cleaner element replacement instructions, see Section 09.05 of the Western Star Workshop Manual.

6. Reset the air restriction indicator.

Frontwall-Mounted Air Cleaner, 4700 Models

Restriction of air flow through the air cleaner element is measured at the tap near the air cleaner outlet. Check the restriction indicator at the air cleaner or in the cab if the vehicle is equipped with a dash-mounted restriction gauge.

Vehicles may be equipped with either a manual-reset restriction indicator with graduations (Fig. 11), or a go/no-go restriction indicator without graduations (Fig. 12).

1. Inspect the air restriction indicator to see if air restriction equals or exceeds the maximum allowable restriction. For instructions, see the Western Star Driver’s Manual.
2. If necessary, replace the air cleaner element. For air cleaner element replacement instructions, see Group 09 of the Western Star Workshop Manual.

3. Inspect the air cleaner housing for cracks, leaks, or any other damage. If the air cleaner housing or element is damaged, replace it.

4. Reset the air restriction indicator.

5. Each time the air cleaner housing is replaced, perform the procedures in MOP 13–01.

Cowl-Mounted Air Cleaner

The standard cowl-mounted air cleaner system used on Western Star trucks is a reverse air flow design. The air flow in this system flows from the inside of...
the element, outward through the filter element into the canister, then into the air intake piping on route to the turbocharger. It is highly recommended that only original equipment filter elements are used to service the air cleaner assemblies. Aftermarket replacement elements may vary in size to the original equipment, or may use a different type of seal at the top and bottom of the element. A variance in the size of the element, or the thickness and type of seal material, can affect the crush of the gasket seal and could result in a poor seal on one of the mating surfaces. Elements that do not fit properly may allow the element to bounce in the canister and allow dirt to pass over the upper seal and into the canister and intake piping.

If the vehicle is equipped with dual air cleaners, replace both elements at the same interval.

1. Remove the cap nuts that secure the service cover to the canister. See Fig. 13. Take note of the orientation of the air intake screen so the service cover can be reinstalled in the correct position.

2. After removing the canister cap, carefully pull the element straight up out of the canister, ensuring no dust or debris is dropped into the canister.

3. Inspect the clean side of the element and canister for evidence of contamination. The clean side of the element is the area outside the gaskets on either end of the element, including the top cover. If debris is present, find the leak, determine the cause, and correct the problem area immediately.

4. Clean the inside of the canister thoroughly. Use a clean damp cloth to wipe every surface clean.

If unable to remove all debris, use a vacuum cleaner to remove all remaining dirt, dust, and contamination.

5. Clean the gasket sealing surfaces of the canister. Properly fitted gaskets are crucial to prevent dirt from entering the canister. Use a damp cloth to wipe clean and remove any hard ridges of dirt built up around the old gasket sealing area on the top cover and the bottom of the canister.

6. Apply pressure to the new gasket with your fingers to test for resilience. When you release pressure, the gasket should instantly spring back to its original shape.

7. Slide in the new element, ensuring that the bottom gasket seats firmly.

NOTE: The element will be sitting higher than normal until the cover bolts compress the gaskets.
Install a new cover gasket, making sure the sealing area around the studs is clean and free of any old gasket material.

8. Inspect the threaded area of the studs. They should be clean and free of corrosion and foreign material. Apply a light coating of oil.

Inspect the cap nuts. If wear is apparent replace them with new ones.

Torque the cap nuts in sequence 96 lbf-in (1080 N·cm). Do not over-tighten the cap nuts. Be certain that the cover has pulled down evenly around the canister, because both element gaskets and the cover gasket are being compressed as the cap nuts are tightened.

9. Recheck the torque of the canister band mounting clamps and be certain the blank portion of the top cap screen area is facing forward.

10. Press the reset button on the bottom of the air restriction indicator to reset to zero. If the indicator fails to reset to zero, replace it with a new one. If the truck is not equipped with a restriction indicator or a dash-mounted restriction gauge, check that the pipe plugs located in the canister, or in the aluminum piping just before the turbo-charger, are tight and correctly torqued.

Frontwall-Mounted Air Cleaner, Non–4700 Models

1. Release the spring clamp fasteners located at the left end of the air cleaner canister. See Fig. 4, Ref. 4. Use caution when removing the element from the canister as some maneuvering may be necessary to avoid the radiator stay rod or brackets mounted in that area.

2. Inspect the interior of the canister. The under-hood air intake system has the air flow directed from the outside of the element to the inside. Therefore, all dirt will be accumulated inside the canister housing, and it must be cleaned thoroughly before reinstalling a replacement element.

3. Use caution when installing the new element to prevent damage to the paper pleats. Be certain the element is properly seated in the canister, then fasten the four spring clamp fasteners.

4. Inspect the air restriction indicator mounted at the outlet end pipe of the canister, and reset it.

5. If equipped with a dash-mounted restriction gauge, inspect the tube and mounting fittings on the air cleaner canister outlet pipe for tightness and correct routing of the line to the dash-mounted gauge.

6. If no restriction indicator of any kind is present, check that the plugs in the canister are torqued to specifications.

09–03 Charge Air Cooler Inspection

1. Check the condition of the charge air cooler piping and clamping hardware. If damaged, replace components and carefully reassemble it to ensure proper penetration and alignment. Tighten the constant-torque clamps 98 lbf-in (11 N·m), and the turbo-out-elbow clamp 62 lbf-in (7 N·m). See Fig. 14.

2. Check the connections at the charge air cooler and all pipe-to-hose penetrations. If acceptable, tighten the constant-torque clamps 98 lbf-in (11 N·m) and the turbo-out-elbow clamp 62 lbf-in (7 N·m). Angle the clamps downward to prevent interference with the hood.

3. Check the mounting and condition of the cooler core.
1. Charge Air Cooler Core
2. Constant-Torque Clamps
3. Turbo Out Elbow
4. Clamp, Turbo Out Elbow

Fig. 14, Charge Air Cooler and Piping
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Compressor Inspection</td>
<td>13–01</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>13–00</td>
</tr>
</tbody>
</table>
13–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

⚠️ DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

13–01 Air Compressor Inspection

1. Inspect the air compressor intake hoses and connections at the air intake and air compressor for physical damage. If needed, change the hoses, and/or tighten or replace the connections.

2. Inspect the coolant supply and return lines for tight connections. Tighten the connections and replace the lines and fasteners if needed.

3. For the air governor, inspect the piping and connections for leaks. Replace gaskets and faulty components as needed.
Title of Maintenance Operation (MOP) | MOP Number
---|---
Alternator and Starter Check | 15–01
Battery Check | 15–02
Safety Precautions | 15–00
15–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

⚠️ DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

15–01 Alternator and Starter Check

1. Disconnect the batteries.
2. Check the tightness of the alternator bracket fasteners; tighten the fasteners as needed. See Group 00 for torque specifications.
3. Check the tension of the alternator belt. See Group 01 for belt tension instructions.
 - Some engines are equipped with dual alternator belts. Always check both belts for correct tension. Engines equipped with a serpentine or poly-V belt have automatic belt tensioners and do not require belt tension inspection.
4. Check that all electrical connections at the alternator and starter are clean. Clean and tighten all charging system electrical connections as needed.
5. Check the alternator wiring for missing insulation, kinks, and heat damage. Replace or repair as needed.

15–02 Battery Check

⚠️ WARNING

Batteries generate explosive gas as a by-product of their chemical process. Do not smoke when working around batteries. Put out all flames and remove any source of sparks or intense heat in the vicinity of the battery compartment. Make sure the battery compartment has been completely vented before disconnecting or connecting the battery cables.

Battery acid is extremely harmful if splashed in the eyes or on the skin. Always wear a face shield and protective clothing when working around batteries.

⚠️ CAUTION

The vehicle is equipped with an alternator charging system. Make sure the polarity (+ and −) is correct when connecting battery cables. Reversing the polarity will damage the alternator.

1. Make sure the batteries are disconnected.
2. Inspect the battery cables for wear and replace as needed. Clean cable connector terminals with a wire brush. Consult your Western Star Dealer for troubleshooting, adjustment, and battery replacement.
 2.1 Clean and tighten the battery cables, terminals, and clamps.
 2.2 Inspect the battery hold-down assembly and the battery box. Replace worn or damaged parts. Remove any corrosion with a wire brush, and wash with a weak solution of baking soda and water. Rinse with clean water, and dry. If needed, paint the retainer assembly to prevent corrosion.
 2.3 Check that foreign objects, such as stones, bolts, and nuts are removed from the battery box.
 2.4 After cleaning, connect the cables to the batteries, and tighten them to the specification listed on the battery. If no specifications are found, then use 10 to 15 lbf·ft (14 to 20 N·m).
 2.5 Coat the battery terminals with dielectric grease.
3. Check the terminals on the battery shut-off switch and the magnetic switch. Make sure the terminal connections are clean and tight. Coat the terminal connections with dielectric red enamel after cleaning.
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant Inspection</td>
<td>20–01</td>
</tr>
<tr>
<td>Cooling System Inspection (Noise Emission Control)</td>
<td>20–02</td>
</tr>
<tr>
<td>Cooling System Pressure-Flush</td>
<td>20–04</td>
</tr>
<tr>
<td>Pressure/Filler Cap Test</td>
<td>20–03</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>20–00</td>
</tr>
</tbody>
</table>
20–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

⚠️ DANGER ⚠️

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

20–01 Coolant Inspection

General Information

The engine produces large quantities of heat during its operation. Too high or low an engine operating temperature will damage the engine. The purpose of the cooling system is to keep the engine at its optimum operating temperature. The optimum operating temperature results in the most efficient use of fuel and allows the engine oil to do its job properly.

The cooling system on Western Star vehicles is a closed or pressure type system, with a mixture of antifreeze and water. By pressurizing the system and using an antifreeze/water mixture, the boiling temperature of the coolant is raised, permitting more efficient, higher operating temperatures.

The coolant supplied with a Western Star vehicle is a 50/50 mix of antifreeze and water giving protection down to –35°F (–37°C). It is recommended that this be the minimum antifreeze mixture strength used. The maximum coolant mixture of 60 percent antifreeze to 40 percent water gives freeze protection to –62°F (–52°C).

Over-concentration of antifreeze or coolant conditioner can cause silicate to settle out of the coolant, forming a silica-gel on cooling system inner surfaces, resulting in overheating.

In addition, the tendency for silica-gel to form increases with water hardness. Hard water (with high levels of calcium and magnesium ions) increases likelihood of the formation of silica-gel. Do not use softened water. The salt used to artificially soften it is corrosive. Most engine manufacturers prefer use of distilled or de-ionized water to reduce the potential and severity of silica dropouts.

Keep the cooling system filled. On vehicles equipped with a frontwall-mounted translucent surge tank (see Fig. 1), keep the coolant level between the FULL and LOW marks. On vehicles equipped with a frontwall-mounted steel surge tank (see Fig. 2), keep the cooling system filled so that coolant can be seen in the sight glass in the surge tank. On vehicles equipped with a radiator-mounted translucent surge tank (see Fig. 3), keep the coolant level between the FULL and LOW marks. If the coolant is low, add the antifreeze solution mixture specified for the vehicle in PartsPro (Group 01).

![Fig. 1, Frontwall-Mounted Translucent Surge Tank](image)

Inspection

⚠️ WARNING ⚠️

Do not remove or loosen the radiator cap until the engine and cooling system have completely cooled. Use extreme care when removing the cap. A sudden release of pressure from removing the cap prior to the system cooling can result in a surge of scalding coolant that could cause serious personal injury.
NOTICE

Never add cold water into the system when the engine is hot as damage to the engine may result.

Every six months have the coolant mixture checked to ensure it is at the proper concentration to protect the cooling system from damage. Refer to the engine manufacturer’s service literature for specific coolant information.

NOTE: Checking the engine coolant level is part of the Pre-trip Inspection. For more information, see the Western Star Driver’s Manual.

1. Park the vehicle on a level surface, set the parking brake, and chock the wheels. Open the hood.
2. The level of coolant should be between the FULL and LOW marks in a translucent surge tank (see Fig. 1 and Fig. 3) or visible through the sight glass on a steel surge tank (see Fig. 2). If the coolant is low or not visible in the sight glass, check the system for leaks.

WARNING

Do not remove or loosen the radiator cap until the engine and cooling system have completely cooled. Use extreme care when removing the cap. A sudden release of pressure from removing the cap prior to the system cooling can result in a surge of scalding coolant that could cause serious personal injury.

3. Slowly turn the SAE pressure/filler cap until it stops, to allow the coolant pressure to bleed off. Press down on the cap and turn it at the same time, then lift off the cap.
4. While the SAE pressure/filler cap is OFF, smell the coolant for strong odors (i.e., diesel fuel). A strong diesel smell indicates that fuel is contaminating the coolant, and the vehicle must be taken to a Western Star dealer to have the source found and the cooling system chemically flushed.
5. Check the condition of the coolant. If the coolant shows scale, rust, silica-gel, oil, or has a frothy scum, the vehicle must be taken to a Western Star dealer to have the contaminate source found and fixed, and the cooling system chemically flushed.

NOTE: Due to environmental concerns, it is recommended that coolant flushing and the replacement of coolant conditioners and coolant filters be performed by your Western Star dealer.
20–02 Cooling System
Inspection (Noise Emission Control)

1. Park the vehicle on a level surface, set the parking brake, and chock the wheels. Open the hood.

WARNING

Do not remove or loosen the radiator cap until the engine and cooling system have completely cooled. Use extreme care when removing the cap. A sudden release of pressure from removing the cap prior to the system cooling can result in a surge of scalding coolant that could cause serious personal injury.

2. Inspect the SAE pressure/filler cap gaskets. Replace the cap if the gasket shows any signs of deterioration or damage. Install the cap and check to ensure that it seals properly on the surge tank filler neck. Replace the cap if it appears not to seal properly.

3. There is a valve on the bottom of the SAE pressure/filler cap that opens under vacuum. This prevents components in the cooling/heating systems from collapsing. Inspect the vacuum-relief valve to be sure it is not stuck. Replace the cap if the vacuum-relief valve is stuck.

4. Check the hoses for possible leaks. Replace any worn, soft, or perforated hoses.

5. Western Star uses Breeze Constant-Torque hose clamps on the radiator hoses. Check the hose clamps to ensure that they are properly torqued. See Fig. 4. The tip of the screw must extend about 1/4 inch (6 mm) from the clamp housing, and the washer stacks must be compressed almost flat. Hose clamps lose torque after installation due to "compression set." Breeze Constant-Torque hose clamps will hold enough torque to automatically keep consistent sealing pressure. Due to temperature changes, the screw tip extension may change. The clamp screw may need to be adjusted for individual applications.

NOTE: Due to environmental concerns, it is recommended that coolant flushing and the replacement of coolant conditioners and coolant filters be performed by your Western Star dealer.

6. If the coolant is low, check the engine oil for possible coolant contamination. If the oil is discolored, there may be an internal engine leak, and the unit should be taken to your Western Star dealer to be repaired before the engine is damaged.

7. Check to see if the front of the radiator, charge air cooler, and oil cooler fins are clogged. Material in the fins will cause the cooling system to overheat. Pressure-wash the radiator to wash out radiator clogging material.

8. Check the fan belts for wear and tightness. For more information on fan belts, see Group 01. If belts are damaged, replace them. If belts are loose, have the proper belt tension set by your Western Star dealer.

9. Check the fan and fan shroud for damage. A damaged fan or shroud will affect the air flow and can cause heating problems. Have the damaged fan or shroud replaced by your Western Star dealer.

If all the previous steps are correct and the engine is overheating, there may be a problem with the fan not operating properly, or the thermostat may be stuck closed. Take your vehicle to a Western Star dealer to have the problem repaired.

If there is a tendency for the engine to run cool, the fan may be running continuously, or the thermostat may be stuck open. Take the vehicle to a Western Star dealer to have the problem repaired.
20–03 Pressure/Filler Cap Test

WARNING

Do not remove or loosen the radiator cap until the engine and cooling system have completely cooled. Use extreme care when removing the cap. A sudden release of pressure from removing the cap prior to the system cooling can result in a surge of scalding coolant that could cause serious personal injury.

NOTICE

The radiator cap currently installed may not be the same one installed when the vehicle was built. If the radiator cap must be replaced, make sure that it is the correct cap for the cooling system of the vehicle. Because the radiator cap pressure rating affects the operating temperature of the engine, installing an improperly rated radiator cap may have adverse effects on the cooling system, and engine operating temperatures. This could cause premature engine wear or damage.

1. Park the vehicle on a level surface, set the parking brake, and chock the wheels. Open the hood.
2. After the coolant has cooled, loosen the pressure/filler cap to relieve system pressure.
3. Remove the pressure/filler cap. Using the Snap-On tool radiator-cap tester shown in Table 1, check the pressure relief cap to see if it maintains pressure to within 10% of the pressure rating marked on the cap. If it does not, replace the cap. Make sure that the replacement radiator cap is correctly rated for the cooling system of the vehicle. Use the recommended tool in Table 1.
4. Inspect the pressure/filler cap gaskets. Replace the cap if the gasket shows any signs of deterioration or damage. Install the cap and check that the cap seals properly on the surge tank filler neck. Replace the cap if it appears not to seat properly.
5. There is a valve on the bottom of the pressure/filler cap that opens under vacuum. This prevents components in the cooling/heating systems from collapsing. Inspect the vacuum-relief valve to be sure it is not stuck. Replace the cap if the vacuum-relief valve is stuck.

20–04 Cooling System Pressure-Flush

NOTE: See the engine manufacturer’s operation and maintenance manual for cooling system maintenance. The engine manufacturer’s manual is provided with each new vehicle at the time of delivery.

1. Park the vehicle on a level surface, set the parking brake, and chock the wheels. Open the hood.
2. Place a suitable container under the lower elbow of the radiator outlet pipe and under the radiator. The container should be capable of holding 60 quarts (57 L) of fluid.

WARNING

Do not remove or loosen the radiator cap until the engine and cooling system have completely cooled. Use extreme care when removing the cap. A sudden release of pressure from removing the cap prior to the system cooling can result in a surge of scalding coolant that could cause serious personal injury.

3. Remove the surge tank pressure/filler cap.
4. Remove the drain plug located at the elbow of the lower radiator outlet pipe. Allow the coolant to drain.

NOTE: Coolant, conditioners, and coolant filters must be sent to proper recyclers.

5. Disconnect the radiator upper and lower hoses. Attach the flushing gun nozzle to the radiator at the lower radiator hose opening. Run the water until the radiator is full.

NOTE: When flushing the radiator, do not apply more than 10 psi (103 kPa) air pressure. Excessive pressure can damage the radiator.

6. Gradually, apply air pressure to help dislodge sediment build up in the radiator core.
IMPORTANT: All liquid that is flushed out of the radiator must be collected and disposed of properly. Pouring contaminated water down the drain is illegal.

7. Shut off the air at the pressure gun nozzle and allow the radiator to refill with water, then repeat the previous two steps until clean water flows from the radiator.

8. Detach the gun nozzle from the lower radiator hose opening. Connect the hoses.

9. Place a pan under the coolant filter to catch engine coolant.

10. Remove the coolant filter. Install and tighten a new filter.

11. Fill the cooling system with new coolant.

12. Install the pressure/filler cap.

13. Start the engine and turn on the cab heater. Allow the engine to warm to normal operating temperature. Check the radiator and hoses for leaks. Repair as required.

14. Shut off the engine and check the coolant level. See “Coolant Inspection” 20–01.
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch Release Bearing Lubrication.</td>
<td>25–01</td>
</tr>
<tr>
<td>Clutch Release Cross-Shaft Lubrication.</td>
<td>25–02</td>
</tr>
<tr>
<td>Fluid Change, Hydraulic Clutch Control.</td>
<td>25–05</td>
</tr>
<tr>
<td>Fluid Level Check, Hydraulic Clutch Control.</td>
<td>25–04</td>
</tr>
<tr>
<td>Safety Precautions.</td>
<td>25–00</td>
</tr>
<tr>
<td>Sleeve Assembly Bronze Bushing Lubrication.</td>
<td>25–03</td>
</tr>
</tbody>
</table>
25–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

25–01 Clutch Release Bearing Lubrication

Lubricate the release bearing as follows:

1. With the vehicle parked on a level surface, apply the parking brakes and chock the rear tires.
2. Remove the clutch inspection plate.

NOTE: For lubricating the release bearing, Eaton Fuller recommends a lithium-base grease that can operate up to at least 325°F (163°C) and meets the NLGI Grade 2 or 3 specification.

Meritor recommends a lithium-base high-temperature grease that meets the NLGI Grade 3 specification.

3. Wipe away any dirt from the grease fitting. See Fig. 1. Using a pressure-type grease gun equipped with the recommended grease, lubricate the bearing until excess grease purges from the rear of the release bearing (toward the transmission).

NOTICE

Do not over-lubricate the clutch release bearing. Over-lubrication could contaminate the clutch internally, causing clutch slippage and premature failure. Do not use chassis grease or multipurpose lubricants.

4. Wipe off excess grease and apply it to both the yoke finger and sleeve bushing contact points. See Fig. 2.

5. Install the clutch inspection plate.

25–02 Clutch Release Cross-Shaft Lubrication

The clutch release cross-shaft is equipped with two grease fittings in the transmission clutch housing.
See Fig. 3 and Fig. 4. Wipe the dirt from the grease fittings and lubricate with multipurpose chassis grease.

Using a pressure-type grease gun equipped with high-temperature grease only, lubricate until grease flows from the release bearing housing.

Depress the clutch pedal a couple of times before starting the engine.

25–03 Sleeve Assembly Bronze Bushing Lubrication

Vehicles equipped with the sealed clutch-release bearing have a lubrication extension outside of the clutch housing. This extension is needed to provide lubrication to the bronze bushing located between the clutch bearing housing and the transmission input shaft.

25–04 Fluid Level Check, Hydraulic Clutch Control

WARNING

Use only approved fluid (DOT 4 brake fluid) in the hydraulic clutch control system. Do not mix different types of brake fluid. The wrong fluid will damage the rubber parts of the system, causing loss of clutch function and the risk of serious personal injury.

NOTICE

Do not allow the fluid level in the reservoir to go below the MIN line. If air enters the system, the hydraulic system will not operate correctly, and the clutch could be damaged.

If the fluid level is below the MIN line, fill the reservoir with new DOT 4 brake fluid from a tightly sealed container until the level reaches the MAX line. See Fig. 5.

25–05 Fluid Change, Hydraulic Clutch Control

Replace the hydraulic clutch control fluid to ensure clutch function is reliable and correct. It can be changed by pressure bleeding or manual bleeding. Pressure bleeding can be done by one person and manual bleeding requires two.

WARNING

Hydraulic clutch control fluid (DOT 4 brake fluid) is hazardous. It may be a skin irritant and can cause blindness if it gets in your eyes. Always wear safety glasses when handling it or bleeding hydraulic lines. If you get it on your skin, wash it off as soon as possible.
Do not spill hydraulic clutch control fluid on the cab paint. Clean it off immediately if any is spilled. Brake fluid can damage paint.

IMPORTANT: The pressure line must slope continuously downward between the master and slave cylinders. On some vehicles, the securing clamps may need to be removed to achieve this and allow the air to be purged. See Fig. 6.

Pressure Bleeding

NOTE: A bleeder system (J-29532) and a bleed adaptor (J-35798) for the fluid reservoir are available through SPX Kent-Moore Tools and may be used to complete the following procedure. To order these parts, call Kent-Moore at 1-800-328-6657.

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires and raise the hood.

2. Prepare the pressure bleeding equipment according to the manufacturer’s instructions. Use new DOT 4 brake fluid from a tightly sealed container. Pressurize the bleeder system to 15 psi (103 kPa).

3. Remove the reservoir lid (see Fig. 5) and install the pressure bleed adaptor on the reservoir.

4. Bleed the hydraulic system as follows.

 4.1 Open the bleed valve on the bleed tank to pressurize the reservoir.

 4.2 Remove the cap from the bleed valve of the slave cylinder. See Fig. 7. On the valve, install a transparent drain hose connected to a catch bottle. The hose needs to fit the bleed valve tight enough so it does not fall off when fluid is pumped out.
4.3 Open the bleed valve on the slave cylinder.

4.4 When the draining fluid is clear and free of air bubbles, close the bleed valve.

5. Check the fluid level in the reservoir. If necessary, add or drain fluid to bring the fluid level to between the MIN and MAX lines marked on the side of the reservoir.

6. Install the reservoir lid.

7. Disconnect the transparent hose. Tighten the bleed screw 88 lbf-in (1000 N·cm) and install the cap on the slave cylinder bleed valve.

8. Depress the clutch pedal a few times. There should be resistance over the full pedal stroke.

Manual Bleeding

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires and open the hood.

 NOTE: The hydraulic system holds approximately 0.5 quart (0.5 liter) of fluid. It may need to be refilled during the bleeding process to prevent air from re-entering the system.

2. Remove the reservoir lid and fill the reservoir (see Fig. 5) with new DOT 4 brake fluid from a tightly sealed container.

3. Remove the cap from the bleed valve of the slave cylinder. See Fig. 7. On the valve, install a transparent drain hose connected to a catch bottle. The hose needs to fit the bleed valve tight enough so it does not fall off when fluid is pumped out.

 NOTE: The following steps require two people—one in the cab to work the clutch pedal, and one to open and close the bleed valve and watch the fluid.

4. Bleed the system, as follows.

 4.1 Open the bleed valve.

 4.2 Depress the clutch pedal until it stops.

 4.3 Close the bleed valve.

 4.4 Return the pedal to the upper position.

 4.5 Repeat the previous steps until the fluid is clear and free of air bubbles.

 4.6 Depress the clutch pedal. There should be resistance over the full pedal stroke.

5. Check the fluid level in the reservoir. If necessary, add or drain fluid to bring the fluid level to between the MIN and MAX lines marked on the side of the reservoir. Install the reservoir lid.

6. Disconnect the transparent hose. Tighten the bleed valve 88 lbf-in (1000 N·cm) and install the cap on the slave cylinder bleed valve.
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allison Transmission Fluid and Filter Change</td>
<td>26–07</td>
</tr>
<tr>
<td>Allison and Eaton Fuller Transmission Breather Check</td>
<td>26–06</td>
</tr>
<tr>
<td>Detroit™ Automated Transmission Fluid Change and Magnetic Plug Cleaning</td>
<td>26–08</td>
</tr>
<tr>
<td>Detroit™ Automated Transmission Fluid Level Inspection</td>
<td>26–09</td>
</tr>
<tr>
<td>ESS Transmission Filter and Boot Inspection</td>
<td>26–04</td>
</tr>
<tr>
<td>Manual Transmission Air Filter/Regulator Check, and Clean or Replace</td>
<td>26–03</td>
</tr>
<tr>
<td>Manual Transmission Fluid Change</td>
<td>26–02</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>26–00</td>
</tr>
<tr>
<td>Transmission Fluid Level Inspection</td>
<td>26–01</td>
</tr>
<tr>
<td>Transmission Inspection</td>
<td>26–05</td>
</tr>
</tbody>
</table>
26–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

26–01 Transmission Fluid Level Inspection

Allison Transmission

NOTICE

Operating a transmission with the fluid level higher or lower than recommended can result in transmission damage. Do not overfill the transmission.

Do not mix types and brands of fluid, because of possible incompatibility. Do not use fluid additives, friction modifiers, extreme-pressure gear fluids, or multiviscosity lubricants.

Cold Check

Clean all dirt from around the end of the fluid fill tube before removing the dipstick. Do not allow foreign matter to enter the transmission. Dirt or foreign matter in the hydraulic system may cause undue wear of transmission parts, make valves stick, and clog passages.

It is important to check the fluid level cold to determine if the transmission has a sufficient amount of fluid to be safely operated until a hot check can be performed.

1. Park the vehicle on a flat, level surface.
2. Apply the parking brake and chock the tires.
3. Run the engine for at least one minute.
4. Shift from DRIVE to NEUTRAL, and then shift to REVERSE to fill the hydraulic system.
5. Shift to NEUTRAL and allow the engine to idle at 500 to 800 rpm.
6. Open the hood, and with the engine running at idle, remove the dipstick from the tube and wipe it clean.
7. Insert the dipstick into the tube completely, then remove the dipstick.
8. Check the fluid level mark and repeat the check procedure to verify the reading.

If the fluid level is within the COLD RUN band, the transmission may be operated until the fluid is hot enough to perform a hot check.

If the fluid level is not within the COLD RUN band, add or drain fluid as needed to adjust the fluid level to the middle of the COLD RUN band. See Fig. 5.

NOTICE

As the fluid temperature increases, so does the fluid level. Do not fill above the COLD RUN band if the transmission fluid is below normal operating temperature.

NOTE: Perform a hot check at the first opportunity after the normal operating temperature, 160 to 200°F (71 to 93°C), has been reached.

Hot Check

1. Park the vehicle on a flat, level surface. Apply the parking brake and chock the tires.
2. Shift the transmission to NEUTRAL.
3. Operate the engine at idle (500 to 800 rpm) until normal operating temperature is reached. Check that the sump temperature is 160 to 200°F (71 to 93°C). Check that the converter-out temperature is 180 to 220°F (82 to 104°C).

4. Open the hood, and with the engine idling, remove the dipstick from the tube and wipe it clean.

5. Insert the dipstick completely into the tube, and remove the dipstick.

6. Check the fluid level mark and repeat the check procedure to verify the reading. Safe operating level is within the HOT RUN band on the dipstick. The HOT RUN band is between the HOT FULL and HOT ADD marks.

If the fluid level is not within the HOT RUN band, add or drain fluid as needed to bring the fluid level within the HOT RUN band. See Fig. 5.

Eaton/Fuller Transmission

NOTICE

Operating a transmission with the fluid level higher or lower than recommended can result in transmission damage. Do not overfill the transmission. Overfilling will force fluid out of the case through the main shaft openings.

Do not mix types and brands of fluid, because of possible incompatibility. Do not use fluid additives, friction modifiers, extreme-pressure gear fluids, or multiviscosity lubricants.

With the transmission at operating temperature, and the vehicle on a level surface, check the fluid level in the transmission.

Some transmissions are equipped with a sight glass for checking the fluid level. For transmissions not so equipped, check the fluid level at the fill plug.

Checking at the Fill Plug

1. Clean the area around the fill plug, and remove it from the side of the case.

2. Using your finger or a bent pipe cleaner, see if the fluid is level with the fill opening. See Fig. 2.

3. If the transmission fluid level is low, check the transmission for leaks, and correct as needed.
2. Check the fluid level in the sight glass. When the fluid level is at or above 3/4 of the sight glass, then it is at or above the minimum fill level. See Fig. 4.

3. If the fluid level is low, check the transmission for leaks, and correct as needed.

4. If needed, add the recommended fluid, until it is at or above 3/4 of the sight glass. See Table 1 for approved transmission lubricants.

5. If needed, add the recommended fluid, until it is level with the lower edge of the fill opening. See Table 1 for approved transmission lubricants.

For more information and a complete listing of Eaton approved lubricants, refer to the Eaton website, www.roadranger.com. For more information and a complete listing of Meritor approved lubricants, refer to the ZF Meritor website, www.zf.com.

Meritor Transmission

--- NOTICE ---

Operating a transmission with the fluid level higher or lower than recommended can result in transmission damage. Do not overfill the transmission.

Do not mix types and brands of fluid, because of possible incompatibility. Do not use fluid additives, friction modifiers, extreme-pressure gear fluids, or multiviscosity lubricants.

1. Remove the fill plug from the transmission.
2. Insert a finger or pipe cleaner into the transmission.
3. Check that the fluid level is even with the base of the fill plug.
 The correct fluid capacity is established by the fill opening. If the transmission has two fill plugs, check that the fluid level is consistent at both fill plugs.
4. If the transmission fluid level is low, check the transmission for leaks, and correct as needed.

--- NOTICE ---

Operating a transmission with the fluid level higher or lower than recommended can result in transmission damage. Do not overfill the transmission. Overfilling will force fluid out of the case through the main shaft openings.

Do not mix types and brands of fluid, because of possible incompatibility. Do not use fluid additives, friction modifiers, extreme-pressure gear fluids, or multiviscosity lubricants.

NOTE: Fluid change intervals are extended to 500,000 miles (800,000 km) on vehicles equipped with a Meritor RM10–115A or RM10–145A transmission or any vehicle.

--- Table 1, Eaton and Meritor Approved Transmission Lubricants ---

<table>
<thead>
<tr>
<th>Transmission Model</th>
<th>Lubricant Type*</th>
<th>Temp. Range</th>
<th>SAE Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton Fuller</td>
<td>Synthetic transmission lubricant meeting Eaton PS-386 lubricant specification</td>
<td>All</td>
<td>—</td>
</tr>
<tr>
<td>Meritor</td>
<td>Synthetic engine oil meeting Meritor specification 0–81, or MIL-L–2104D or E</td>
<td>All</td>
<td>50W</td>
</tr>
</tbody>
</table>

* Do not mix types or brands of fluid. Multiweight and extreme-pressure gear fluids are not recommended.
equipped with an Eaton/Fuller transmission filled with synthetic transmission fluid.

1. Park the vehicle on level ground, apply the parking brakes, and chock the tires. Place a large drain pan under the transmission.

--- CAUTION ---

To prevent skin burns from hot transmission fluid, wear protective gloves when removing the drain plugs.

2. Clean the area around the fill plug, and remove it from the side of the case. Remove each drain plug from the bottom of the transmission case. Drain the fluid while the transmission is warm.

3. Clean the fill and drain plugs.
 For magnetic plugs, use a piece of key stock or any other convenient steel slug to short the two magnetic poles and divert the magnetic field. Clean the material that may have been attracted to the magnet. The amount of material on the magnetic plug shows the condition and wear in the transmission; excessive material may indicate that the transmission should be looked at. Remove the key stock or steel slug from the magnetic drain plug.

 Install and tighten each drain plug 50 lbf·ft (68 N·m).

 NOTE: Eaton/Fuller transmissions are available with an optional transmission fluid filter. The filter is a remote-mount, spin-on type, and is located between the transmission and the fluid cooler. The filter bracket is attached to the frame rail. The filter is mounted in a vertical position, and should be filled with fluid before installation to ensure the proper fluid level in the transmission case. For optimum transmission performance, change the filter each time the fluid is changed.

4. For an Eaton/Fuller transmission with a transmission fluid filter(s), replace the filter(s), as follows.

 4.1 Place a drain pan under the transmission fluid filter.

--- CAUTION ---

To prevent skin burns from hot transmission fluid, wear protective gloves when removing the drain plugs.

4.2 Place a strap or chain wrench around the filter canister, and rotate in a counterclockwise motion to separate the filter from the mounting. Carefully spin the filter off the mount and remove it.

4.3 Apply a light coat of transmission fluid to the O-ring gasket on the new filter. Fill the filter with the specified transmission fluid, and spin the filter on the mount.

 NOTE: The filter fills slowly, so be patient to ensure the proper fluid level has been reached.

4.4 Once the filter has made contact with the mount, use a strap or chain wrench to rotate the filter canister an additional 180 to 270 degrees to firmly tighten the filter. Wipe the filter clean of any fluid after it is tightened.

5. Add fluid until it is level with the lower edge of the fill opening. See Fig. 5. If the transmission has two fill openings, add fluid to the level of both openings. See Table 2 for approved transmission lubricants, and Table 3 for lubricant capacities. The correct capacity is established by the location of the fill opening.

 For more information and a complete listing of Eaton approved lubricants, refer to the Eaton website, www.roadranger.com. For more information and a complete listing of Meritor approved lubricants, refer to the ZF Meritor website, www.zf.com.

Eaton and Meritor Approved Transmission Lubricants

<table>
<thead>
<tr>
<th>Transmission Model</th>
<th>Lubricant Type*</th>
<th>Temp. Range</th>
<th>SAE Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton Fuller</td>
<td>Synthetic transmission lubricant meeting Eaton PS-386 lubricant specification</td>
<td>All</td>
<td>—</td>
</tr>
</tbody>
</table>
Eaton and Meritor Approved Transmission Lubricants

<table>
<thead>
<tr>
<th>Transmission Model</th>
<th>Lubricant Type*</th>
<th>Temp. Range</th>
<th>SAE Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meritor</td>
<td>Synthetic engine oil meeting Meritor specification 0–81, or MIL–L–2104D or E</td>
<td>All</td>
<td>50W</td>
</tr>
</tbody>
</table>

* Do not mix types or brands of fluid. Multiweight and extreme-pressure gear fluids are not recommended.

Table 2, Eaton and Meritor Approved Transmission Lubricants

Transmission Lubricant Capacities

<table>
<thead>
<tr>
<th>Transmission Make and Model*</th>
<th>Capacity: pt (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton/Fuller 7-Speed</td>
<td></td>
</tr>
<tr>
<td>T–14607A/B</td>
<td>37 (17.5)</td>
</tr>
<tr>
<td>TX–14607B</td>
<td>37 (17.5)</td>
</tr>
<tr>
<td>Eaton/Fuller 9-Speed</td>
<td></td>
</tr>
<tr>
<td>RT–11609A</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RTX–11609B/R</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RT/RTX–11709H</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RT–12609A</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RTX–12609B/R</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RT/RTX–12709H</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RT–13609A</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RTX–13609B/R</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RT/RTX–13709H</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RT–14609A</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RTX–14609B/R</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RT/RTX–14709H</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>RTX–16709B/H</td>
<td>27 (12.8)</td>
</tr>
<tr>
<td>Eaton/Fuller 10-Speed</td>
<td></td>
</tr>
<tr>
<td>FR–11210B</td>
<td>23.5 (11)</td>
</tr>
<tr>
<td>FR–14210B</td>
<td>23.5 (11)</td>
</tr>
<tr>
<td>FR–15210B</td>
<td>23.5 (11)</td>
</tr>
<tr>
<td>RTO/RTX–11708LL</td>
<td>28 (13.2)</td>
</tr>
<tr>
<td>RT–11710B</td>
<td>26 (12.3)</td>
</tr>
<tr>
<td>RTX–11710B/C</td>
<td>26 (12.3)</td>
</tr>
<tr>
<td>RTO–11908LL</td>
<td>29 (13.7)</td>
</tr>
<tr>
<td>RTLO–12610B</td>
<td>26 (12.3)</td>
</tr>
<tr>
<td>Eaton/Fuller 13-Speed</td>
<td></td>
</tr>
<tr>
<td>RTLO–12713A</td>
<td>28 (13.2)</td>
</tr>
<tr>
<td>RTLO–14713A</td>
<td>28 (13.2)</td>
</tr>
<tr>
<td>RTLO–16713A</td>
<td>28 (13.2)</td>
</tr>
<tr>
<td>Eaton/Fuller 15-Speed</td>
<td></td>
</tr>
<tr>
<td>RT/RTX/RT–14715</td>
<td>28 (13.2)</td>
</tr>
<tr>
<td>RT/RTX/RT–15715</td>
<td>28 (13.2)</td>
</tr>
<tr>
<td>Eaton/Fuller 18-Speed</td>
<td></td>
</tr>
<tr>
<td>RTLO–14718B</td>
<td>28 (31.2)</td>
</tr>
<tr>
<td>RTLO–16718B</td>
<td>28 (13.2)</td>
</tr>
<tr>
<td>RTLO–18718B</td>
<td>28 (13.2)</td>
</tr>
<tr>
<td>Meritor 9-Speed</td>
<td></td>
</tr>
<tr>
<td>RM9–115A</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RMO9–115B</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RMX9–115B/R</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RM9–125A</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RMO9–125A/B</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RMX9–125A/B/R</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RM9–135A</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RMO9–135A/B</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RMX9–135A/B/R</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RM9–145A</td>
<td>20.5 (9.7)</td>
</tr>
</tbody>
</table>
Transmission Lubricant Capacities

<table>
<thead>
<tr>
<th>Transmission Make and Model*</th>
<th>Capacity: pt (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMO9–145A/B</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RMX9–145A/B/R</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RM9–155A</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RMX9–155B</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>Meritor 10-Speed</td>
<td></td>
</tr>
<tr>
<td>RM10–115A</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RMX10–115A</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RM10–125A</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RMX10–125A</td>
<td>20 (9.5)</td>
</tr>
<tr>
<td>RM10–135A</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RMX10–135A</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RM10–145A</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RMX10–145A</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RM10–155A</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RMX10–155A</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>RMX10–165A</td>
<td>20.5 (9.7)</td>
</tr>
<tr>
<td>Meritor 13-Speed</td>
<td></td>
</tr>
<tr>
<td>RMO13–145A</td>
<td>22 (10.4)</td>
</tr>
</tbody>
</table>

* For models not listed in this table see the Eaton website, www.roadranger.com.

Table 3, Transmission Lubricant Capacities

6. For a transmission equipped with a fluid pump or a fluid cooler, operate the engine for five minutes after filling the transmission, then check the fluid level again.

7. Install the fill plug, then tighten it 50 lbf-ft (68 N·m).

8. Operate the vehicle to check for correct operation.

26–03 Manual Transmission Air Filter/Regulator Check, and Clean or Replace

Eaton/Fuller

1. Apply the parking brakes and chock the tires. Drain the air reservoirs.

WARNING

Drain the air supply; if the air supply is not drained before the air filter/regulator is serviced, serious injury and component damage could result.

2. Clean the outside of the air filter/regulator with cleaning solvent. See Fig. 6.

3. Remove the end cap, large O-ring, and filter element from the filter housing. See Fig. 7. Remove the small O-ring from the end cap.

WARNING

Wear safety goggles when using compressed air to clean parts, as permanent harm to eyes could result from flying debris.

WARNING

Wear safety goggles when using compressed air to clean parts, as permanent harm to eyes could result from flying debris.

Fig. 6, Air Filter/Regulator Location (Eaton/Fuller transmission shown)

NOTE: Do not remove, disassemble, or adjust the air regulator. If the air regulator is not keeping the air pressure between 58 and 63 psi (400 to 435 kPa), replace the air filter/regulator, which is not serviceable.
4. Clean the filter element by dipping it in alcohol or other cleaning solvent. Blow compressed air through the filter element (inside to outside) to loosen surface dirt and to dry the element. If it is not damaged, the sintered metallic filter element will last the life of the vehicle. Wipe out the filter housing with a clean, dry, lint-free rag. Clean and inspect the O-rings and the end cap. Replace any parts that are damaged.

5. Install the large O-ring, then the filter element (small end first) into the filter housing.

6. Install the small O-ring in the end cap, then install the end cap and tighten it 8 to 12 lbf-ft (11 to 16 N·m).

NOTICE

A leaking air filter or air lines can cause slow or hard shifting of the transmission, and eventual transmission damage.

7. Start the engine, and build pressure in the air system. Check for air leaks at the filter housing and air line connections; repair any leaks.

Meritor

1. Park the vehicle on a level surface. Apply the parking brakes and chock the tires.

2. Remove the element from the air filter/regulator assembly. Inspect the O-rings in the end cap; replace worn or damaged O-rings. Inspect the element for fluid contamination. If fluid is present, replace the element. Inspect the air supply system for the source of the fluid, and service it as needed.

3. Install the element in the filter/regulator assembly.

4. Apply a light coat of silicone grease, or an equivalent grease to the O-rings in the end cap. Install and tighten the end cap 10 to 15 lbf-ft (14 to 20 N·m).

5. Build air pressure in the system, check for leaks, and make any needed repairs.

26–04 ESS Transmission Filter and Boot Inspection

On ESS transmissions only, inspect the filter and protective boots.

1. Remove the filter from its location on the top right-hand side of the transmission.

2. Clean the filter with solvent.

3. Install the filter, as removed.

4. Inspect the protective boots, both right and left, for tears or signs of cracking. Replace if needed.

26–05 Transmission Inspection

Check the transmission for oil leaks, as follows.

1. Check at the transmission output shaft for oil leaks. A small amount of oil and dirt accumulation is normal, as a small amount of oil is allowed past the seal to lubricate it. If the rear of the transmission is wet with oil, the rear seal may need replacing.

2. Check for oil leaks around the speedometer pickup.

3. Check the transmission case joints for oil leaks.

4. Check transmission oil line fittings for oil leaks.

5. Check the bottom of the flywheel housing for oil accumulation. Oil along the bottom seam or around the inspection cover of the flywheel housing may be an indication of a transmission input seal leak. Not replacing a leaking input oil seal will cause clutch slippage.
6. If leaks are found, take the vehicle to your Western Star dealer to have the problem corrected.

26–06 Allison and Eaton Fuller Transmission Breather Check

If the transmission is equipped with a housing breather (see Fig. 8), it must remain clear. A plugged breather could result in pressure build-up, which could cause oil leakage.

IMPORTANT: Do not spray water, steam, or cleaning solution directly at the breather. These actions can force water or cleaning solution into the transmission and contaminate the transmission fluid.

If the breather is plugged, clean or replace it. If replacing it, use a correct-size wrench (pliers or a pipe wrench can crush or damage the breather stem and produce metal particles that could enter the transmission).

Check more often if the vehicle is operating under very dusty conditions.

26–07 Allison Transmission Fluid and Filter Change

Allison 3000 Family and 4000 Family Transmissions

NOTE: When the optional prognostics feature is enabled on an Allison transmission, the system monitors oil life and filter life. To reset the indicator, press the Mode button (on the electronic shift control) for 10 seconds with the ignition on but the engine not running. For more information, see the Allison Transmission website, www.allisontransmission.com.

1. Park the vehicle on a level surface and apply the parking brakes.

2. Operate the vehicle until the transmission reaches normal operating temperature: 160 to 200°F (71 to 93°C).

To prevent dirt from entering the transmission, use only clean containers and fillers for the transmission fluid. Do not use fillers or containers that have been used for water or antifreeze. Dirt, water, or antifreeze could damage the transmission.

Engine coolant in the transmission hydraulic system requires immediate action to prevent malfunction and possible serious transmission damage. For more information, see the Allison Transmission website, www.allisontransmission.com.

IMPORTANT: When draining transmission fluid, check for evidence of dirt or water contamination. A small amount of condensation could appear in the fluid during operation.

Water contamination is normally characterized as a milky discoloration of the transmission fluid. Obvious contamination of the transmission fluid could indicate a leak between the water and fluid areas of the transmission cooler. Inspect and pressure-test the cooler to confirm the leak. If the transmission cooler is leaking and the oil has been contaminated, replace the transmission cooler and overhaul the transmission.
NOTE: If only the filters are being changed, do not drain the fluid.

3. Clean the area around the drain plug and the transmission fluid pan. Place a drain pan under the transmission and remove the drain plug. Examine the fluid as it drains.

4. Remove the 12 mounting capscrews (six each) from the two filter covers. See Fig. 9.

NOTE: A lot of fluid will drain when the filter covers are removed.

5. Remove the filter covers, gaskets, O-rings, and filters from the transmission.

6. Lubricate the new O-rings with transmission fluid, and install them on the covers.

7. Install the filter over the gaskets.

8. Install the fluid filters on the cover assemblies.

9. Install the filter and cover assemblies into the filter compartment. Align each cover assembly with the holes in the channel plate sump, and push the cover assemblies in by hand to seat the seals.

NOTICE

Do not use the capscrews to draw the filter covers to the sump. This can damage the covers, seals, or sump.

10. Install six capscrews in each cover, and torque the bolts 38 to 44 lbf-ft (51 to 61 N·m).

11. Install a new drain plug O-ring, and install the drain plug. Tighten the drain plug 18 to 24 lbf-ft (25 to 32 N·m).

NOTE: Fluids meeting specification TES 295 are preferred over TES 389 fluids for use in Allison 3000 and 4000 family transmissions. See the Allison Transmission website (www.allison-transmission.com) for a list of approved transmission fluids and usage recommendations.

12. Refill the transmission with fresh transmission fluid. Use only a fluid that meets Allison Transmission specification TES 295 or TES 389. Castrol TranSynd® is a TES 295 fluid available through Allison distributors and dealerships. See Table 4 for lubricant refill capacities.
Lubricant Refill Capacities, Allison 3000 and 4000 Family Transmissions*

<table>
<thead>
<tr>
<th>Family</th>
<th>Sump Size</th>
<th>Capacity: qt (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>4 Inch</td>
<td>19 (18)</td>
</tr>
<tr>
<td></td>
<td>2 Inch</td>
<td>17 (16)</td>
</tr>
<tr>
<td>4000</td>
<td>4 Inch</td>
<td>39 (37)†</td>
</tr>
<tr>
<td></td>
<td>2 Inch</td>
<td>31 (30)†</td>
</tr>
</tbody>
</table>

* Quantities listed are approximate. Add listed amount of fluid, then perform a "hot check" and add fluid as needed. Do not overfill.

† Add 3 qt (2.8 L) for transmissions with PTO.

Table 4, Lubricant Refill Capacities, Allison 3000 and 4000 Family Transmissions

13. Check and adjust the fluid level using the appropriate Allison Transmission procedures in **MOP 26–01**.

26–08 Detroit™ Automated Transmission Fluid Change and Magnetic Plug Cleaning

NOTICE

Operating a transmission with the fluid level higher or lower than recommended can result in transmission damage. Do not overfill the transmission. Overfilling will force fluid out of the case through the main shaft openings.

Do not mix types or brands of fluid, because of possible incompatibility. Do not use fluid additives, friction modifiers, or extreme-pressure gear fluids.

IMPORTANT: Drain the transmission when the fluid is warm. If not already warm, run the engine until the transmission fluid reaches operating temperature. Shift the transmission to neutral (N) and shut down the engine.

1. Apply the parking brakes, and chock the rear tires. Place a large drain pan under the transmission.
2. Clean the area around the fill plug, then remove it from the side of the gear case. Remove the drain plug from the bottom of the case. See **Fig. 10**.
3. Clean the fill plug and the drain plug.
4. Install a new seal on the drain plug, then install the plug and tighten it 45 lbf⋅ft (60 N⋅m).

NOTICE

Detroit transmissions use synthetic lubricant that meets specific requirements. To see a list of approved lubricants and information to identify which transmissions they can be used with, see the Transmission Fluid Service Information brochure at http://dttna.info/DT12FluidsManual.

5. Add fluid until it is level with the lower edge of the fill opening; see **Fig. 12**. See the Detroit Transmission Fluid Service Information brochure at http://dttna.info/DT12FluidsManual, for identifying the transmission type, estimated transmission fluid capacities, and applicable fluid specifications.

NOTE: In all cases, the correct fluid level is established by checking at the fill opening.

6. Operate the engine for five minutes after filling the transmission, then check the fluid level again.
7. Install a new seal on the fill plug, then install the plug and tighten it 45 lbf⋅ft (60 N⋅m).
8. Operate the vehicle to check for correct operation.
NOTICE

Operating a transmission with the fluid level higher or lower than recommended can result in transmission damage. Do not overfill the transmission. Overfilling will force fluid out of the case through the main shaft openings.

Do not mix types or brands of fluid, because of possible incompatibility. Do not use fluid additives, friction modifiers, or extreme-pressure gear fluids.

With the transmission at operating temperature, and the vehicle on a level surface, check the fluid level in the transmission.

1. Clean the area around the fill plug, then remove it from the side of the gear case.

2. Using your finger or a bent pipe cleaner, see if the fluid is level with the fill opening. See Fig. 12.

3. If the fluid level is low, check the transmission for leaks, and correct as needed.

NOTICE

Detroit transmissions use synthetic lubricant that meets specific requirements. To see a list of approved lubricants and information to identify which transmissions they can be used with, see the Transmission Fluid Service Information brochure at http://dtna.info/DT12FluidsManual.

4. If needed, add the recommended fluid until it is level with the lower edge of the fill opening. See the Transmission Fluid Service Information brochure at http://dtna.info/DT12FluidsManual for approved transmission lubricants.

5. Clean the fill plug and install a new seal on it. Install the plug in the side of the gear case, then tighten it 45 lbf-ft (60 N·m).
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifth Wheel Inspection</td>
<td>31–01</td>
</tr>
<tr>
<td>Fifth Wheel Lubrication</td>
<td>31–02</td>
</tr>
<tr>
<td>Frame Fastener Torque Check</td>
<td>31–04</td>
</tr>
<tr>
<td>Holland Fifth Wheel Sliding Mechanism Inspection</td>
<td>31–03</td>
</tr>
<tr>
<td>Premier 690 Coupling Inspection</td>
<td>31–06</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>31–00</td>
</tr>
<tr>
<td>Trailer Electrical Connector Lubrication</td>
<td>31–05</td>
</tr>
</tbody>
</table>
31–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

31–01 Fifth Wheel Inspection

WARNING

All fifth wheel maintenance, adjustment, and rebuilding must be done only by a qualified mechanic. Improper or incomplete procedures could result in a possible disengagement of the trailer from the tractor, which could result in personal injury or property damage.

Parts are under spring compression. Wear safety goggles while servicing the fifth wheel. Failure to do so can result in personal injury, due to parts ejecting with force.

Fontaine

1. Disconnect the tractor from the trailer. For instructions, see the Western Star Driver's Manual.
2. Thoroughly steam clean the fifth wheel.
3. Check for cracks in the fifth wheel assembly, mounting brackets, and mounting parts.
4. Ensure that both bracket pins are in place and secured by retainer pins and cotter pins. See Fig. 1.
5. For fifth wheels equipped with bracket liners, rock the fifth wheel. If it does not rock freely, remove the top plate and inspect the bracket liners. Replace liners that are broken or less than 0.125 inch (3 mm) thick at the top of the liners. For the liner replacement procedure, see the Fontaine website, www.fifthwheel.com.
6. Check the jaw and stationary jaw for mushrooming, and check that the serrations at the jaw and wedge are in good condition.
7. Test the secondary safety lock latch for ease of operation.
8. Check for loose nuts or bolts on the fifth wheel and the mounting. Set a torque wrench to the maximum torque value for the bolt being checked, and confirm that the torque is to specification. Do not loosen the bolt to check the torque. See Group 00 for bolt torque specifications.
9. Check all springs to see if they are securely fastened, and are not deformed.

WARNING

Do not disassemble the fifth wheel to inspect the springs. The springs are under extreme pressure, and could cause serious injury.

10. Check the wedge adjustment.
10.1 Close the fifth wheel on a standard 2-inch (50-mm) kingpin or similar 2-inch (50-mm) diameter shaft so that it locks.
10.2 Push on the wedge stop rod with hand pressure. It should move in 1/4 inch (6 mm) and spring back out on release.

If the free travel is not 1/4 inch (6 mm), adjust the distance to 1/4 inch (6 mm) by turning the wedge stop rod, on the right side of the top plate, clockwise to reduce the gap and counter-clockwise to increase it.

11. Replace cracked, worn, or damaged parts with new parts. Replace all loose mounting bolts with 5/8–11 SAE grade 8 bolts, grade C locknuts, and hardened washers. Do not re-use bolts, nuts, and washers on fifth wheel mountings.

12. After inspecting the fifth wheel, lubricate all moving parts with a chassis or multipurpose grease. Apply a generous coating of grease to the top plate to fill the grooves, or depressions, on the top plate. See MOP 31–02 for lubrication instructions.
NOTE: 6000 Series shown; 7000 Series fifth wheels use similar parts.

1. Wedge Stop Rod Nut
2. Flat Washer, 5/8"
3. Wedge Stop Rod Spring
4. Wedge Stop Rod
5. Grease Fitting
6. Bracket Pin
7. Bracket Retainer Pin
8. Cotter Pin, 3/16" x 1"
9. Bumper Spring
10. Handle Spring
12. Flat Washer
13. Secondary Safety Lock
15. Hex Locknut
16. Pull Handle
17. Bolt, Bumper
18. Bushing
19. Bumper
20. Timer Spring
21. Timer
22. Operating Handle
23. Bolt, Operating Handle
24. Bushing, Operating Handle
25. Hair Pin Cotter
26. Wedge
27. Step Jaw

Fig. 1, Fontaine Fifth Wheel
Holland FWS1

1. Disconnect the tractor from the trailer. For instructions, see the Western Star Driver’s Manual.

2. Thoroughly steam clean the fifth wheel.

3. Check the fifth wheel plate for cracks. Check for sharp edges on top; the chamfer should be 1/8 to 1/4 inch (3 to 6 mm).

4. When the wheel is locked, the safety latch must swing free and fall freely into position. See Fig. 2.

5. The lever bar and release handle must be in proper alignment. See Fig. 3. Compare the lever bar and release handle alignment to a new, or a properly operating lever bar and release handle. Replace any bent or misaligned lever bar or release handle.

6. Check all cotter pins for cracking or damage. Replace any cotter pin that shows any signs of damage.

7. Check all mounting bolts for signs of fatigue, and tighten them to the proper torque. For torque specifications, see Group 00. Inspect all angles, plates, and brackets for cracks or other damage.

8. Replace cracked, worn, or damaged parts with new parts. Replace all loose mounting bolts with 5/8–11 SAE grade 8 bolts, grade C locknuts, and hardened washers. Do not re-use bolts, nuts, and washers on fifth wheel mountings.

9. After inspecting the fifth wheel, lubricate all moving parts with a chassis or multipurpose grease. See MOP 31–02 for lubrication instructions.

Holland FW35

1. Disconnect the tractor from the trailer. For instructions, see the Western Star Driver’s Manual.

2. Thoroughly steam clean all fifth wheel components before inspection.

3. Check for cracks in the fifth wheel assembly, mounting brackets, and mounting parts.

4. Check the fastener torques on the fifth wheel assembly and fifth wheel mounting. Tighten bolts and nuts as needed. Replace missing or damaged bolts.

5. Inspect the fifth wheel for bent, worn, damaged, and missing parts; replace them as needed with genuine Holland parts.

6. Using a Holland Kingpin Lock Tester (Holland tool number TF-TLN-5001, available through the PDCs as HLD TFTLN5001), check the operation of the locking mechanism by opening and closing the locks. See Fig. 4.

7. After inspecting the fifth wheel, lubricate all moving parts with a chassis or multipurpose grease. See MOP 31–02 for lubrication instructions.
Castloc II and Simplex Series

1. Disconnect the tractor from the trailer. For instructions, see Chapter 10 of the Western Star Driver’s Manual.

2. Thoroughly steam clean the fifth wheel.

3. Check the fifth wheel plate for cracks. Check for sharp edges on top; the chamfer should be 1/8 to 1/4 inch (3 to 6 mm).

4. When the wheel is locked, the safety latch must swing free and fall freely into position. See Fig. 5.

5. The lever bar and operating handle must be in proper alignment. See Fig. 6. Compare the lever bar and operating handle alignment to a new, or a properly operating lever bar and operating handle. Replace any bent or misaligned lever bar or operating rod.

6. Check all cotter pins for cracking or damage. Replace any cotter pin that shows any signs of damage.

7. Level the fifth wheel plate to a horizontal position. Measure the height from a stationary mounting point (see Fig. 7, item 3), such as the frame rail to the top of the fifth wheel plate (item 1). Pry up on the fifth wheel plate (item 4) below the pin boss, and measure the vertical movement (item 5). The bracket connection provides a 9/32 inch (7 mm) vertical clearance to provide cushioning and to avoid downward pin-loading while retaining minimum plate lift. If the plate lift (Ref. A) exceeds 5/16 inch (8 mm) as a result of wear or rubber deterioration, install new bracket-shoe rubber pads.

NOTE: Do not measure plate lift immediately after a trailer has been uncoupled from the fifth wheel.

Fig. 4, Holland Fifth Wheel Properly Closed

Fig. 5, Simplex Series Fifth Wheel

Fig. 6, Lever Bar and Operating Handle Alignment
wheel. The rubber may have taken a temporary set, which will normally recover after being uncoupled for a short period of time.

8. Check all mounting bolts for signs of fatigue, and tighten them to the proper torque. For torque specifications, see Group 00. Inspect all angles, plates, and brackets for cracks or other damage.

9. Replace cracked, worn, or damaged parts with new parts. Replace all loose mounting bolts with 5/8–11 Grade 8 bolts, Grade C locknuts, and hardened washers. Do not re-use bolts, nuts, and washers on fifth wheel mountings.

10. After inspecting the fifth wheel, lubricate all moving parts with a chassis or multipurpose grease. See Maintenance Operation 31–02 for lubrication instructions.

Jost

1. Disconnect the tractor from the trailer. For instructions, see the Western Star Driver’s Manual.

2. Thoroughly steam clean the fifth wheel.

3. Check the mounting for missing or damaged fasteners, and broken components. Replace or repair as needed.

4. Inspect the bracket pin bolts. Make sure the locking tabs are properly securing the bolts in place. See Fig. 8.

5. Check the fifth wheel for bent, worn, or broken parts. Replace as needed.

6. If the fifth wheel is equipped with low-lube plates, check the plates and replace if damaged or worn down to the securing bolts. It is normal for outside edges of the plate to pucker slightly; this does not affect performance.

7. Check the fifth wheel adjustment. Using a lock tester, lock and unlock the fifth wheel several times. Make sure that the locking mechanism works properly.

 - **The lock is properly adjusted if:** the wheel locks and unlocks easily each time and the lock tester rotates freely.
 - **The lock is too loose if:** you feel fore-aft play when pulling and pushing on the lock tester handle. See Fig. 9, Ref. A.
 - **The lock is too tight if:** the lock tester does not rotate freely in the lock. See Fig. 9, Ref. B.

8. If the lock is improperly adjusted, correct as follows.

 - **If the lock is too tight,** loosen the jam nut, turn the adjustment bolt clockwise one full turn, then reset the jam nut. Lock and unlock the mechanism several times to test. Repeat if necessary. See Fig. 10.
 - **If the lock is too loose,** loosen the jam nut, turn the adjustment bolt counterclockwise one full turn, then reset the jam nut. Lock and unlock the
9. If the fifth wheel is equipped with a sliding mechanism, inspect and adjust it as follows.

9.1 Check the bracket for any cracks or missing and damaged parts.
9.2 Inspect the locking plungers for full engagement.
9.3 Check the locking mechanism for proper operation.
 If the plungers will not release, check the air cylinder or plunger adjustment.
 If the plungers are loose, check the plunger adjustment and the plunger springs for proper compression. Replace if needed.
9.4 The outboard slider assembly requires no adjustment. If the plungers are loose, inspect and replace locking mechanism parts as needed.
9.5 The inboard slider is adjustable for frame width and plunger engagement. For ad-
justment, refer to the fifth wheel installation instructions.

10. Replace cracked, worn, or damaged parts with new parts. Replace all loose mounting bolts with 5/8–11 SAE grade 8 bolts, grade C locknuts, and hardened washers. Do not re-use bolts, nuts, and washers on fifth wheel mountings.

11. After inspecting the fifth wheel, lubricate all moving parts with a chassis or multipurpose grease. Apply a generous coating of grease to the top plate to fill the grooves, or depressions, on the top plate. See MOP 31–02 for lubrication instructions.

31–02 Fifth Wheel Lubrication

To maintain proper fifth wheel operation, always lubricate the fifth wheel after an inspection has been performed.

IMPORTANT: Lubricate the fifth wheel:

- After power washing or steam cleaning.
- If the vehicle operates in harsh conditions such as salt spray from road surfaces, or in extremely dusty environments.
- After any service that requires removal of lubrication from the fifth wheel head or components.

WARNING

Failure to properly lubricate the fifth wheel could result in a possible disengagement of the trailer from the tractor, which could result in personal injury or property damage.

Fontaine

1. Tilt the top plate forward (the front of the fifth wheel is down) and apply grease to each bearing area through the zerk fittings located on each side of the top plate just to the front of the bracket pins. Continue to apply grease until it is coming out of the back of the bearing. It may be necessary to raise the rear of the fifth wheel with a pry bar to open up the pocket slightly and allow the grease to flow through. A substantial amount of grease may be required initially to fill the reservoir.

Holland FWS1

Apply a heavy coat of grease to the top plate, either through the grease fittings located on the underside of the top plate, or by direct application.

Holland FW35

1. Using a water-resistant lithium-base grease, grease the top plate.

2. Using a light oil (such as SAE 10W or 20W motor oil), lubricate the cam track and pivot. See Fig. 11.
3. Grease the yoke tips, locks, and the release handle and spring; see Fig. 12. Grease the mounting bracket supports through the grease fittings. A “low temp” grade grease rated for -30°F (-34°C) or lower such as Cato Oil and Grease #5213, Craftsman Chemical Co. #LTF 2, Mystic LP-200, or equivalent is recommended.

Castloc II and Simplex Series

Use a chassis or multipurpose grease to lubricate the two grease fittings located on either side of the fifth wheel top plate. Lubricate the two grease fittings located in the grease grooves on the fifth wheel top plate. Lubricate the two grease fittings located below the top plate mounting pins. Lubricate the lock mechanism.

Once the fifth wheel’s moving parts are lubricated, apply a heavy coat of grease to the top plate, either through the grease fittings located on the underside of the top plate, or by direct application. On slide-mount applications, lubricate the slider lock pockets and the slider bracket.

1. Release Handle and Spring
2. Grease Fitting
3. Yoke Tip
4. Locks

Fig. 11, Holland FW35 Fifth Wheel, Oil Lubrication

Fig. 12, Holland FW35 Fifth Wheel, Grease Lubrication

Jost

Lubricate the kingpin lock using a hand pump grease gun through the grease zerk on the skirt of the fifth wheel; see Fig. 10. Apply a light oil to all moving parts. For sliding fifth wheels spray diesel fuel on the slide path of the base plate.

NOTICE

Do not use a power grease gun. The pressure will damage the lube line.

If the fifth wheel is not equipped with low-lube plates, apply a lithium-based grease with extreme pressure (EP) additive to the trailer contact surface of the fifth wheel.

NOTE: If the fifth wheel is equipped with low-lube plates, the top plate only requires lubrication at the new product break-in stage. The low-lube plates require no further lubrication.
31–03 Holland Fifth Wheel Sliding Mechanism Inspection

1. Loosen the locking plunger jam nut and turn the adjusting bolt out (counterclockwise). See Fig. 13.

2. Disengage and engage the locking plungers. Check that the plungers are securely seated without binding. If the locking plungers do not operate properly see Group 31 of the Western Star Workshop Manual for adjustment procedures.

3. Turn the adjusting bolt clockwise until it contacts the rack. Turn the adjusting bolt an additional 1/2 turn, then securely tighten the locking nut.

31–04 Frame Fastener Torque Check

Frame brackets and components are to be checked at initial maintenance (IM). Check the torque of frame fasteners to offset the effects of “bedding in” (or seating). When possible, always check the torque of the nut, not the bolt head. This will give a true torque reading by eliminating bolt body friction. When checking the torque of frame fasteners, inspect the frame for cracks and other damage. Set a click-type torque wrench to the maximum torque of the fastener you are checking. Apply pressure until the torque wrench clicks. Do not loosen the fastener to check the torque. See Group 00 in the vehicle workshop manual for torque specifications.

NOTICE

Make sure frame fasteners are properly tightened. Continued vehicle operation with loose fasteners could result in bracket or frame damage.

NOTE: Engine supports on vehicles built from January 2007 do not require checking.

Inspect and check the fasteners at the following locations:

- air tank mounting brackets
- axle stops
- cab mount brackets
- deck plates
- battery and tool box brackets
- engine supports
- equalizer brackets
- exhaust brackets
- fifth wheel legs
- fifth wheel mounting
- frame crossmembers and gussets
- front frame brackets
- front suspension spring brackets
- fuel tank brackets
- radius rods
- rear engine supports
- rear suspension spring brackets
- shock absorbers
- all other suspension fasteners
- all other axle fasteners
- all other frame fasteners

Any component that shows signs of cracking or other damage must be repaired or replaced. Refer to the vehicle workshop manual for repair or replacement information.
31-05 Trailer Electrical Connector Lubrication

In some cases, failure of trailer cables occurs due to intrusion of chloride-based road deicing chemicals into the trailer connector. Once inside the connector, the chloride-based chemicals corrode the brass terminals and create bridging between positive and ground terminals.

NOTE: The use of soap is not recommended for cleaning the electrical connector, as some soaps may increase the corrosion process.

1. Wash out any existing grease, dirt, and corrosion on the trailer connectors with electrical contact cleaner spray.
2. Grease the trailer connector with a lithium-based dielectric grease.

31-06 Premier 690 Coupling Inspection

IMPORTANT: Before servicing the Premier coupling, refer to the Premier web site at www.premier-mfg.com for complete safety, operation, and maintenance instructions.

WARNING

If at any time the 690 coupling is bound up (jackknifed), the 294 bolt MUST be replaced immediately! Do not use the coupling until the bolt has been replaced. In addition, carefully inspect the 690 coupling, drawbar, drawbar eye, front end assembly, and tail board for damage. Failure to do so may result in trailer separation from the truck while in use, resulting in serious personal injury or property damage.

The time-in-service of the 294 bolt located in the 690 coupling must be monitored, and maintenance performed as follows. See Fig. 14.

For a new or replaced 294 bolt:
- Record the date of installation.

6 months after installation date:
- Remove the 294 bolt. Using dye penetrate or magnetic particle testing along the length of the bolt, inspect for fractures.
- If the 294 bolt has no damage, install it and continue to use for another 6 months.
- If the 294 bolt is fractured, DO NOT USE. Contact Premier Mfg. Co.

1 year after installation date:
- Regardless of service duty, replace the 294 bolt with a new one.

Fig. 14, Premier 690 Trailer Coupling
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Precautions</td>
<td>32–00</td>
</tr>
<tr>
<td>Suspension Inspection</td>
<td>32–01</td>
</tr>
<tr>
<td>Suspension Lubrication</td>
<td>32–02</td>
</tr>
<tr>
<td>Suspension U-Bolt Torque Check</td>
<td>32–03</td>
</tr>
</tbody>
</table>
32–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

⚠️ DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

32–01 Suspension Inspection

Front Suspension Check

⚠️ WARNING

Do not replace individual leaves of a damaged leaf spring assembly; replace the complete spring assembly. Visible damage (cracks or breaks) to one leaf causes hidden damage to other leaves. Replacement of only the visibly damaged part(s) is no assurance that the spring is safe. On front spring assemblies, if cracks or breaks exist in the two top leaves, a loss of vehicle control could occur. Failure to replace a damaged spring assembly could cause an accident resulting in property damage, serious personal injury, or death.

Inspect the front spring assemblies for cracked, broken, or abnormally bent leaves. If any of these conditions exist, replace the spring assembly. See your Western Star dealer for replacement.

Inspect the spring pin bushings. If there is any indication of the outer bushing casing moving within the spring eye, the complete spring assembly must be replaced. Refer to Group 32 of the Western Star Workshop Manual for instructions.

For threaded and bronze bushings, ensure the center pin is free to rotate within the outer bushing. If the pin is seized, replace the complete spring assembly. Refer to Group 32 of the Western Star Workshop Manual for instructions.

For maintenance free rubber bushings, inspect the bushings at the forward spring eye and shackle. If there is any indication of the rubber bushing being cracked or damaged, replace the bushing. Refer to Group 32 of the Western Star Workshop Manual for instructions.

Front and Rear Suspension Shock Absorber Check

Regularly checking shock absorbers and having weak shock absorbers replaced will help avoid unscheduled downtime and reduce overall maintenance costs.

The role of a shock has changed dramatically. Not so many years ago, most suspensions had heavy multi-leaf springs with limited travel and a great deal of inherent friction. These suspensions quickly self dampened and therefore limited the amount of work the shock needed to perform.

Low-friction suspensions, such as air and taper leaf, have dramatically changed the shock’s role. Shocks now play a critical role in dampening suspension oscillation.

Properly functioning shocks can help to reduce the wear of more expensive suspension components, such as air bags, while assisting in the reduction of tire wear. Worn shocks simply cannot assist in providing control over today’s sophisticated suspension systems.

Quick Test

Shock absorbers function at temperatures ranging from air temperature to 350°F (177°C). A shock’s function is to slow the bounce of the vehicle’s springs. It does this by transforming the energy produced by the spring to heat and dissipating it. As a result the shock should be slightly warm to hot to the touch after normal use.

If ride deterioration is experienced and there is a suspicion that a shock has failed internally, which is visually undetectable, perform the following checks within a few minutes of operating the vehicle.

1. Drive the vehicle at moderate speeds for at least 15 minutes.

2. Within a few minutes of driving, touch each shock absorber carefully on its body below the dust cover or tube. First touch a part close to the shock absorber (spring, frame) to establish a reference temperature of metal.
3. All shock absorbers should be warmer than any part near the shock absorber (spring, frame). Suspect a failure in any shock absorber that is noticeably cooler than the shock absorber on the other end of the axle. Different temperatures from axle to axle do not indicate failures, but cooler temperatures on any one axle does warrant removal and examination of the cooler shock absorber. See Fig. 1.

4. To inspect for an internal failure, remove and shake the suspected shock. Listen for the sound of metal rattling inside. Rattling of metal parts can indicate that the shock has an internal failure.

Shock Absorber Inspection

There are many conditions that indicate it may be time to replace shocks. Check for the following conditions.

1. Uneven tire wear (check wheel balance first).
2. Ride deterioration.
3. Excess vibration.
4. Sagging taper leaf springs (this is not caused by weak shocks).
5. Premature wear on cab, electrical, and cooling system components.
6. Broken or torn air springs. Shocks will only affect this if they are broken or missing.
7. Upper or lower mount eye broken and dust tube broken. See Fig. 2.
8. Upper or lower bushing cracked or deformed (when not under load). See Fig. 3.
9. Bent or dented body. See Fig. 4.

Misting shocks are often misdiagnosed as failures. Misting is the process whereby very small amounts of shock fluid evaporate at high operating temperatures. The mist passes through the upper seal of the shock. When the mist reaches the cooler outside air it condenses and forms a film on the outside of the shock body. When mixed with road debris and dust, a grime will often coat the body of the shock. Misting is perfectly normal and a necessary function of the shock. The fluid which evaporates through the upper seal area helps to lubricate and prolong the life of the seal.

Many technicians find it difficult to differentiate between a misting shock and a true leaker, which needs replacing. A leaker will show clear signs of fluid leaking in streams from the upper seal. These streams can most easily be seen when the shock is fully extended and one inspects as far up the main body of the shock (underneath the dust cover or tube) as possible. See Fig. 5 and Fig. 6.

Rear Suspension Check

TufTrac Suspension

1. Inspect the suspension spring assemblies for pitted, cracked, broken, or abnormally bent leaves, and extreme rust. If any of these conditions exist, replace the spring assembly.

WARNING

Do not replace individual leaves of a damaged leaf spring assembly; replace the complete spring assembly. Visible damage (cracks or breaks) to one leaf causes hidden damage to other leaves. Replacement of only the visibly damaged part(s) is no assurance that the spring is safe. On front
spring assemblies, if cracks or breaks exist in the two top leaves, a loss of vehicle control could occur. Failure to replace a damaged spring assembly could cause an accident resulting in property damage, serious personal injury, or death.

IMPORTANT: On multi-leaf suspensions, closely inspect each component of the leaf spring assemblies, including the brackets, U-bolts, and related parts.

2. Inspect the brackets for cracks in the castings. Inspect the V-rod tower welds for cracking or other signs of damage. Also check for contact between the frame rail and the upper axle clamp brackets. If contact exists, check the V-rod bushing for wear. Check the V-rod fastener torques.

3. Inspect the rubber center bearing and spring tip pads for excessive wear, including delamination of the rubber-to-metal shim interface, and distortion and degradation of rubber.

4. Inspect the V-rods and lower control rods for wear and looseness.
 4.1 Without disconnecting the control rods, use your hand to attempt to move each of the control rod ends up, down, in, and out. If there is any movement, examine the control rods for wear or damage. Replace if necessary.
 4.2 Inspect the rubber bushings for cracks or cuts.
 4.3 Check for any shifting of the barpin.
 4.4 Check for cracks in the metal components and welds.

5. Check all fasteners for looseness.

6. Inspect the shock absorbers for oil leaks and worn rubber bushings. Replace the shock absorbers and/or rubber bushings if wear or damage is noted.

AirLiner Suspension

WARNING

Do not replace individual leaves of a damaged leaf spring assembly; replace the complete spring assembly. Visible damage (cracks or breaks) to one leaf causes hidden damage to other leaves. Replacement of only the visibly damaged part(s) is no assurance that the spring is safe. On front spring assemblies, if cracks or breaks exist in the two top leaves, a loss of vehicle control could occur. Failure to replace a damaged spring assembly could cause an accident resulting in property damage, serious personal injury, or death.

IMPORTANT: To prevent voiding the warranty on Barksdale height-control valves, note the following:

- Do not overtighten the bolts in the Barksdale height-control valve housing. The bolts should not be loose, and should not require tightening. Only if necessary, tighten the valve housing bolts 45 lbf-in (500 N·cm). Any damage to the valve housing will void the warranty.
- Do not attempt to disassemble the Barksdale valve body or the control lever. There are no serviceable parts in the valve, and any disassembly will void the warranty.

NOTICE

When removing or loosening a Barksdale height-control valve from a mounting bracket, always hold the valve-side mounting studs in place with an Allen wrench while loosening or tightening the nuts that attach the valve to the bracket. Because the mounting studs are threaded into the valve body, loosening the nuts without holding the studs can tighten the studs, which can crush the valve body and damage the valve. Conversely, tightening the nuts without holding the studs can back the studs out, causing a separation of the two halves of the valve body, and possibly a leak.

1. Inspect the fasteners that attach the suspension brackets to the frame for proper torque. See Group 00 for bolt torque specifications.

WARNING

Be sure that the fasteners are torqued correctly. Fasteners that are not tight can cause separation of components or premature failure of components, loss of vehicle control and possible personal injury or property damage.

2. Inspect the forward and rear spring brackets for wear, cracks, and other damage. If any of these conditions exist, replace the damaged bracket(s).
Replace worn, cracked, or damaged spring brackets. Failure to do so could result in bracket breakage, possibly leading to loss of vehicle control and resulting in personal injury or property damage.

3. Inspect the crossmember(s) and gussets for wear, cracks, and other damage. If any of these conditions exist, replace the damaged parts.

4. Visually check the air spring piston for cracks, chips, and broken areas. Check the air bag for rips, tears, and holes. Verify that the air spring assembly does not leak.

If damaged air bags are found, do not continue to use the vehicle, take the vehicle to your Western Star dealer to have the air bags replaced because the sudden loss of air bag pressure can cause loss of vehicle control resulting in serious personal injury and property damage.

IMPORTANT: Before checking the AirLiner suspension height, make sure there is no load on the chassis, and the trailer is unhitched.

5. Park the vehicle on a level surface, using a light application of the brakes. Do not apply the parking brakes. Shift the transmission into neutral, and build the secondary air pressure to at least 100 psi (690 kPa). Shut down the engine.

6. Mark the location of the front and rear tires on the floor, and chock the tires on one axle only.

7. On single-drive rear axle configurations, measure the distance from the bottom of the left axle stop to the top of the U-bolt pad. On dual-drive rear axle configurations, measure the distance from the bottom of the forwardmost left axle stop to the top of the axle U-bolt pad. See Fig. 7, Ref. A. The correct distance for single and dual-drive rear axles is from 2-3/8 to 2-7/8 inches (60 to 73 mm).

8. If the axle stop measurement is not correct, contact your Western Star dealer to adjust the leveling valves.

9. Check the shock absorbers. For instructions, see Maintenance Operation 32-01, "Suspension Inspection."

Before making any inspections, always make sure that the vehicle’s park brake is set and that the wheels are chocked to prevent accidental vehicle movement to prevent serious injury.

1. Inspect the fasteners that attach the suspension brackets to the frame for proper torque. See Group 00 for bolt torque specifications.

Be sure that the fasteners are torqued correctly. Fasteners that are not tight can cause separation of components or premature failure of compo-
ments, loss of vehicle control and possible personal injury or property damage.

2. Chock the front tires to prevent the vehicle from moving. Place the transmission in neutral, and release the parking brakes before inspecting the Chalmers rear suspension.

3. Power-wash the Chalmers rear suspension, or clean it with a hard-bristle brush before performing a visual inspection.

4. Visually inspect the rubber bushings for cracks or other damage.

 Try to move the torque rod ends using your hands only, and check for any free-play. If free-play is felt, replace the torque rod end bushing. Do not use a pry bar to check for free-play. Use of a pry bar may lead to premature bushing replacement.

5. Visually inspect the walking beam for cracks or other damage. If damage is found, replace the walking beam.

6. Visually inspect the restrictor cans for cracks, severe corrosion, and distortion. If any of these conditions are present, or the restrictor can is missing, replace it.

 WARNING

 Replace all cracked or missing restrictor cans. Failure to do so could lead to loss of vehicle control, which could result in property damage, serious personal injury, or death.

7. Check the shock absorbers. For instructions, see *Maintenance Operation 32-01*, "Suspension Inspection."

Hendrickson RS Series

WARNING

Before making any inspections, always make sure that the vehicle’s park brake is set and that the wheels are chocked to prevent accidental vehicle movement to prevent serious injury.

1. Inspect the fasteners that attach the suspension brackets to the frame for proper torque. See Group 00 for bolt torque specifications.

Hendrickson RT Series

WARNING

Before making any inspections, always make sure that the vehicle’s park brake is set and that the wheels are chocked to prevent accidental vehicle movement to prevent serious injury.

1. Inspect the fasteners that attach the suspension brackets to the frame. See Group 00 for bolt torque specifications.

WARNING

Be sure that the fasteners are torqued correctly. Fasteners that are not tight can cause separation of components or premature failure of components, loss of vehicle control and possible personal injury or property damage.

2. Visually inspect each frame hanger for any evidence of cracks and rust streaks coming out from between the frame rail and the bracket.

3. Visually inspect the load cushions for cuts and swelling. Cushions cut by the retaining lips of the saddles of frame hangers indicate the cushions may not be the correct hardness or configuration for the use of the vehicle.

4. Check the shock absorbers. For instructions, see *Maintenance Operation 32-01*, "Suspension Inspection."

WARNING

Be sure that the fasteners are torqued correctly. Fasteners that are not tight can cause separation of components or premature failure of components, loss of vehicle control and possible personal injury or property damage.

2. Check that the torque on the number one spring bracket lock bolts is 45 to 63 lbf-ft (62 to 85 N·m). See Fig. 8.

3. Inspect the leaf springs for worn or broken spring leaves.

WARNING

Do not replace individual leaves of a damaged leaf spring assembly; replace the complete spring as-
1. Inspect the fasteners that attach the suspension brackets to the frame for proper torque. See Group 00 for bolt torque specifications.

WARNING

Be sure that the fasteners are torqued correctly. Fasteners that are not tight can cause separation of components or premature failure of components, loss of vehicle control and possible personal injury or property damage.

2. Check the torque of the suspension U-bolts every 24,000 miles (40,000 kilometers). For instructions, see Maintenance Operation 32-03, "Suspension U-Bolt Torque Check."

3. Visually inspect each suspension bracket for any evidence of cracks and rust streaks coming out from between the frame rail and the bracket.

4. Check shock absorbers every 18,000 miles (30,000 kilometers). For instructions, see Maintenance Operation 32-01, "Suspension Inspection."

5. Inspect the air bags for sufficient and equal pressure. Examine the air bags for wear and cuts.

WARNING

If damaged air bags are found, do not continue to use the vehicle, take the vehicle to your Western Star dealer to have the air bags replaced because the sudden loss of air bag pressure can cause loss of vehicle control resulting in serious personal injury and property damage.

6. Park the vehicle on a level surface, using a light application of the brakes. Do not apply the parking brakes. Shift the transmission into neutral, and build the secondary air pressure to at least 100 psi (690 kPa). Shut down the engine.

7. Mark the location of the front and rear tires on the floor, and chock the tires on one axle only.

Hendrickson HAS

WARNING

Before making any inspections, always make sure that the vehicle’s park brake is set and that the wheels are chocked to prevent accidental vehicle movement to prevent serious injury.

1. Inspect the cam surfaces of the number two spring bracket and number three spring bracket for wear due to high mileage. Check Fig. 8. Also check the inner side edges of the hanger legs for wear. Excessive wear on the sides of the legs is an indicator there may be problems with the spring eye bushing. Excessive wear at either point requires that the spring hanger be replaced.

4. Check the shock absorbers. For instructions, see Maintenance Operation 32-01, "Suspension Inspection."

Fig. 8, Hendrickson RT Series Suspension

1. Front Axle Stop
2. Number 1 Spring Bracket
3. Number 2 Spring Bracket
4. Number 3 Spring Bracket

07/05/2001

F320906
8. Check the ride height by measuring, directly above the axle, the distance from the bottom of the frame rail to the bottom of the main support member. The correct ride height is 4-1/4 inches (108 mm).

If any problem is found, take the vehicle to your Western Star dealer to have the problem corrected.

Neway Suspension

WARNING

Before making any inspections, always make sure that the vehicle’s park brake is set and that the wheels are chocked to prevent accidental vehicle movement to prevent serious injury.

1. Inspect the fasteners that attach the suspension brackets to the frame for proper torque. See Group 00 for bolt torque specifications.

WARNING

Be sure that the fasteners are torqued correctly. Fasteners that are not tight can cause separation of components or premature failure of components, loss of vehicle control and possible personal injury or property damage.

2. Visually inspect each suspension bracket for any evidence of cracks and rust streaks coming out from between the frame rail and the bracket.

3. Check the shock absorbers. For instructions, see Maintenance Operation 32-01, "Suspension Inspection."

4. Inspect the air bags for sufficient and equal pressure. Examine the air bags for wear and cuts.

WARNING

If damaged air bags are found, do not continue to use the vehicle, take the vehicle to your Western Star dealer to have the air bags replaced because the sudden loss of air bag pressure can cause loss of vehicle control resulting in serious personal injury and property damage.

5. Park the vehicle on a level surface, using a light application of the brakes. Do not apply the parking brakes. Shift the transmission into neutral, and build the secondary air pressure to at least 100 psi (690 kPa). Shut down the engine.

6. Mark the location of the front and rear tires on the floor, and chock the tires on one axle only.

7. Check the ride height by measuring the distance from the bottom of the frame rail to the center of the axle. The correct ride height is from 9-3/4 to 10-1/4 inches (248 to 260 mm).

Reyco Suspension

WARNING

Before making any inspections, always make sure that the vehicle’s park brake is set and that the wheels are chocked to prevent accidental vehicle movement to prevent serious injury.

1. Inspect the fasteners that attach the suspension brackets to the frame for proper torque. See Group 00 for bolt torque specifications.

WARNING

Be sure that the fasteners are torqued correctly. Fasteners that are not tight can cause separation of components or premature failure of components, loss of vehicle control and possible personal injury or property damage.

2. Check the torque of the suspension U-bolts. For instructions, see Maintenance Operation 32-03, "Suspension U-Bolt Torque Check."

3. Check the shock absorbers. For instructions, see Maintenance Operation 32-01, "Suspension Inspection."

4. Inspect the leaf springs for worn or broken spring leaves.

WARNING

Do not replace individual leaves of a damaged leaf spring assembly; replace the complete spring assembly. Visible damage (cracks or breaks) to one leaf causes hidden damage to other leaves. Replacement of only the visibly damaged part(s) is no assurance that the spring is safe. On front spring assemblies, if cracks or breaks exist in the two top leaves, a loss of vehicle control could occur. Failure to replace a damaged spring assembly could cause an accident resulting in property damage, serious personal injury, or death.
5. Inspect each frame hanger for any evidence of cracks and rust streaks coming out from between the frame rail and the bracket.

32–02 Suspension Lubrication

Front Suspension
Weekly, grease the front spring pins and rear shackle pins. Wipe all dirt away from grease fittings (if equipped) on the spring-eye bushings. Apply multipurpose extreme pressure (EP) chassis grease with a pressurized grease gun until old grease is forced out. For some applications, like twin steer, the grease fitting is toward the inside, for clearance. When greasing the spring pins, *always* raise the vehicle to remove vehicle weight from the springs.

Rear Suspension

Freightliner

Single Axle
No lubrication is required on a Freightliner single-axle rear suspension.

Tandem Axle
Lubricate the equalizer cap-and-tube assembly bushings by applying multipurpose chassis grease at the grease fitting until the old grease is forced out from the cap-and-tube assembly. See Fig. 9.

Chalmers
No lubrication is required on a Chalmers rear suspension.

Hendrickson
The Hendrickson RS Series suspension does not require lubrication.

For Hendrickson RT2 and RTE2 Series, lubricate the bronze, ball-indented bushings in the spring eye, as follows.

1. Park the vehicle on a level surface, apply the parking brakes, and chock the front tires.
2. Raise the rear of the vehicle until the rear wheels are suspended in the air, then support the vehicle with safety stands. This relieves the load on the bushings and pins to allow the proper flow of lubricant around them.
3. Use a multipurpose chassis grease, and lubricate the bronze, ball-indented bushings in the spring eyes at the grease fitting. See Fig. 10. Continue to lubricate until grease exits both ends of the bushing. If the pin will not accept lubricant, remove the pin and clean the lubrication channels where lubricant may have hardened.

Fig. 9, Equalizer Assembly Lubrication

Fig. 10, Hendrickson RT2 and RTE2 Series Bushing Lubrication
Neway
No lubrication is required on a Neway rear suspension.

Reyco
No lubrication is required on a Reyco rear suspension.

32–03 Suspension U-Bolt Torque Check

CAUTION
Failure to retorque the U-bolt nuts could result in spring breakage and abnormal tire wear.

1. Park the vehicle on a flat surface and apply the parking brakes. Chock the tires.
2. Check U-bolt torque in a diagonal pattern. Set a click-type torque wrench to the highest torque value for the fastener being checked. See Group 00 for torque specifications. Turn the wrench in a clockwise motion (looking up) until the torque wrench clicks. See Fig. 11.
3. Remove the chocks.

Fig. 11, Tightening Pattern for U-Bolt Nuts
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Axle Wheel Bearing Lubrication</td>
<td>33–04</td>
</tr>
<tr>
<td>Front Drive Axle Lubricant Change</td>
<td>33–06</td>
</tr>
<tr>
<td>Front Drive Axle Lubricant Level Check</td>
<td>33–05</td>
</tr>
<tr>
<td>Knuckle Pin Lubrication</td>
<td>33–01</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>33–00</td>
</tr>
<tr>
<td>Steer Axle Hub Cap Vent Plug Inspection</td>
<td>33–08</td>
</tr>
<tr>
<td>Tie Rod Inspection</td>
<td>33–03</td>
</tr>
<tr>
<td>Tie Rod Lubrication</td>
<td>33–02</td>
</tr>
<tr>
<td>Wheel Alignment Check</td>
<td>33–07</td>
</tr>
</tbody>
</table>
33–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

⚠️ DANGER ⚠️

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

33–01 Knuckle Pin Lubrication

NOTICE

Use regulated pressure when lubricating the knuckle assemblies, otherwise damage could result to the knuckle caps.

Detroit™ Axles

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires. When lubricating upper and lower knuckle assemblies, do not raise the front axle.
2. Wipe the fittings clean.
3. Apply multipurpose chassis grease, NLGI Grade 1 (6% 12-hydroxy lithium stearate grease) or NLGI Grade 2 (8% 12-hydroxy lithium stearate grease), until new grease is seen at the junctions of the axle beam and knuckles. For locations of grease fittings, see Fig. 1; for grease exit points, see Fig. 2.

Dana Spicer Axles

Park the vehicle on a level surface, apply the parking brakes, and chock the tires. When lubricating upper and lower knuckle assemblies, do not raise the front axle. Wipe the fittings clean, then apply multipurpose chassis grease, NLGI Grade 1 (6% 12-hydroxy lithium stearate grease) or NLGI Grade 2 (8% 12-hydroxy lithium stearate grease), until new grease is seen at the junctions of the axle beam and knuckles. See Fig. 3. Knuckle pins without grease fittings are permanently lubricated.

Meritor Axles

Park the vehicle on a level surface, apply the parking brakes, and chock the tires. When lubricating knuckle pin bushings, do not raise the front axle. Wipe the lube fittings clean, and apply multipurpose chassis grease.
grease, NLGI Grade 2 (8% 12-hydroxy lithium stearate grease), until new grease is seen at the bushing grease seal opposite the fittings. The grease seal will accept grease pressure without damage, and is designed to have grease pumped out through it during lubrication. Even if grease leaks out around the top, or bottom-plate gasket, continue pumping until new grease is seen at the bushing seal opposite the grease fitting; see Fig. 4.

NOTE: For operation in very cold climates, use NLGI Grade 1 (6% 12-hydroxy lithium stearate grease).

33–02 Tie Rod Lubrication

NOTE: Some axles require lubrication of the tie rod ends.

1. Wipe the tie rod end grease fittings clean.

2. Pump multipurpose chassis grease, NLGI Grade 1 (6% 12-hydroxy lithium stearate grease) or NLGI Grade 2 (8% 12-hydroxy lithium stearate grease), into the tie rod ends until all used grease is forced out and fresh grease is seen at the ball stud neck. See Fig. 5.

33–03 Tie Rod Inspection

IMPORTANT: If the tie rod end boot is torn or missing, replace the entire tie rod end. Do not replace the boot only.

Fig. 3, Dana Spicer Knuckle Pin Lubrication

Fig. 4, Knuckle Pin Lubrication, Meritor Axles

Fig. 5, Grease Fitting and Boot (Detroit axle shown)
sitions. If the cross tube does not rotate in either direction, replace both tie rod ends.

4. Position yourself directly below the ball stud socket. Using both hands, grab the end as close to the socket as possible, no more than 6 inches (15.2 cm) from the end. Firmly apply about 100 pounds of hand pressure in an up and down motion several times. When moving the assembly, check for any movement at both tie rod ends. See Fig. 6.

If any movement is detected at one tie rod end, replace both tie rod ends. Always replace tie rod ends in pairs, even if only one tie rod end is damaged.

5. Check the cross tube for cracks or other damage. If the cross tube is bent or damaged, replace the cross tube.

6. Check the clamps for damage. If a clamp is damaged, replace the clamp. Replace the entire cross tube assembly if either clamp is welded to the cross tube.

7. Check for proper installation of the tie rod end clamp to the cross tube. Make sure that the tie rod ends are threaded in the cross tube past the clamps and the slots at the cross tube ends.

8. Check the zerk fittings for damage. If a zerk fitting is damaged, replace it.

Some tie rod ends have no zerk fittings because they are not greaseable. Do not install a zerk fitting on a nongreaseable tie rod end.

9. Check that the cotter pin is in place. If it is not, tighten the tie rod end nut to one of the following specs depending on the axle manufacturer.

For Detroit axles, tighten the castle nut to 120 to 170 lbf-ft (163 to 230 N-m). To align the cotter pin hole with the castle nut slot, turn the nut up to 1/6 turn (maximum).

For Meritor axles, tighten the tie rod end nut per the size of the stud:
- 7/8–14, 160 to 300 lbf-ft (217 to 406 N-m)
- 1–14, 250 to 450 lbf-ft (339 to 610 N-m)
- 1-1/8–12, 350 to 650 lbf-ft (475 to 881 N-m)
- 1-1/4–12, 500 to 675 lbf-ft (678 to 915 N-m)

10. Check the steering arm bolts for a minimum torque of 300 lbf-ft (406 N-m). If the steering arm bolt torque has fallen below this specification, remove the bolt, clean all the threads, and apply new Loctite® 680. Tighten the bolt 300 to 450 lbf-ft (406 to 610 N-m).

33–04 Front Axle Wheel Bearing Lubrication

Stemco front axle hub caps have a transparent inspection window with lubrication level marks for checking the amount of lubricant available for the front wheel bearings. See Fig. 7. If the lubricant level is low, remove the center fill plug and add lubricant until the level reaches the 'full' mark. Fill the hub with Hypoid Gear Oil API-GL-5 with Military Specification MIL-L-2105C, SAE viscosity 75W-90.
Notice

Failure to keep drive axle lubricant filled to the proper level with the recommended axle lubricant can result in axle damage.

NOTE: Follow the recommended maintenance schedule for draining and flushing the drive axles. See Group 00 for time or mileage intervals.

1. With the vehicle parked on level ground, apply the parking brakes and chock the tires.
2. If the vehicle has just been driven, allow a few minutes for the lubricant to settle.
3. Clean the oil fill plug and the area surrounding it. Remove the fill plug. See Fig. 8.
4. Lubricant should be level with the bottom of the fill hole. See Fig. 9. If low, check the axle for leaks, and have any leaks corrected. Add lubricant as required. See Table 1 and Table 2 for recommended drive axle lubricants.

5. Apply a small amount of thread sealant (Loctite® or equivalent), to the threads of the filler plug. Install and tighten the fill plug 40 to 60 lbf-ft (54 to 81 N·m).
Eaton Drive Axle Recommended Lubricants

<table>
<thead>
<tr>
<th>Lubricant Type</th>
<th>Conditions</th>
<th>SAE Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton® Roadranger® Synthetic Drive Axle Lubricants,</td>
<td>Over-the-Road Service</td>
<td>75W-90</td>
</tr>
<tr>
<td>or Equivalent with Military Specification MIL-L-2105D</td>
<td>Off-Highway, or Under Extra-Heavy Loads</td>
<td>80W-140</td>
</tr>
</tbody>
</table>

Table 1, Eaton Drive Axle Recommended Lubricants

Meritor Drive Axle Recommended Lubricants

<table>
<thead>
<tr>
<th>Lubricant Type</th>
<th>Outside Air Temperature</th>
<th>SAE Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoid Gear Oil API-GL-5 with Military Specification MIL-L-2105C</td>
<td>+10°F (-12°C) & Up& *</td>
<td>85W-140</td>
</tr>
<tr>
<td></td>
<td>-40°F (-40°C) & Up& *</td>
<td>75W-90</td>
</tr>
<tr>
<td></td>
<td>-40°F (-40°C) & Up& *</td>
<td>75W-140</td>
</tr>
<tr>
<td>Synthetic Gear Oil</td>
<td>-40°F (-40°C) & Up& *</td>
<td>75W-90</td>
</tr>
<tr>
<td></td>
<td>-40°F (-40°C) & Up& *</td>
<td>75W-140</td>
</tr>
</tbody>
</table>

* There is no upper limit on these outside air temperatures, but axle sump temperature must never exceed 250°F (121°C).

Table 2, Meritor Drive Axle Recommended Lubricants

33–06 Front Drive Axle Lubricant Change

NOTICE

Failure to change the axle lubricant at more frequent intervals, when adverse operating conditions require, could result in axle damage.

Refer to Table 1 and Table 2 for recommended drive axle lubricants.

1. With the vehicle parked on level ground, apply the parking brakes and chock the tires.
2. Clean the area around the fill plug. Remove the fill plug.
3. Place a drain pan under the axle. Remove the drain plug from the bottom of the housing and completely drain the lubricant, while the unit is warm.
4. The drained oil should be stored appropriately for recycling.
5. It is necessary to flush the axle the first time (ONLY) that the axle lubricant is changed. Flush the axle with clean flushing oil, then drain it thoroughly. The drained oil should be stored appropriately for recycling.

IMPORTANT: The axle should not be flushed with any solvent, such as kerosene.

6. Clean the fill and drain plugs. A piece of keystock or other convenient steel bar may be used across the magnetic poles to divert the magnetic field. Clean the metallic particles from the plug.

NOTE: The magnetic plug should have a minimum pickup capacity of 1-1/2 lb (0.7 kg) of low-carbon steel, in bar or plate form. Magnets will rapidly lose effectiveness as collected material bridges the gap between the two poles. Clean or change the plugs before this occurs. It may be necessary to clean or change the plugs one or more times between lubricant change intervals.

7. Install and tighten the drain plug to 35 lbf·ft (47 N·m).
8. Fill the axle housing to the bottom of the fill hole, *(Fig. 9)* using the specified lubricant. See Table 1 and Table 2 for recommended drive axle lubricants.
9. Install and tighten the fill plug to 35 lbf·ft (47 N·m).
10. Remove the chocks. Then drive the vehicle, unloaded, for 1 to 2 miles (2 to 3 km) at speeds not...
to exceed 25 mph (40 km/h), to thoroughly circulate lubricant throughout the carrier and housing assembly.

33–07 Wheel Alignment Check

General Information
The axles and wheels are aligned at Western Star using Hunter laser alignment equipment. Correct front axle alignment is needed to ensure long tire life, ease of handling, and steering stability.

1. Camber is the vertical tilt of the wheel as viewed from the front of the vehicle. Camber angle is measured in degrees, and is not adjustable. Negative camber is the top of the wheels tilted inwards. Front tires wearing on the inboard side may be due to excessive negative camber. See Fig. 10.

2. Caster is the tilt of the knuckle pin (or king-pin), as viewed from the side. Caster angle is measured in degrees and is adjustable. An incorrect caster angle does not cause tire wear. However, a positive caster angle that exceeds specifications could cause vehicle shimmy and an increased steering effort. Excessive negative caster angle could cause unstable steering, and the vehicle may wander and weave.

3. Wheel toe-in is the distance that the front of the wheels are closer together than the rear of the wheels. Wheel toe-in is adjustable. If toe-in is not correct, the vehicle could pull to one side while driving. Wheel shimmy and excessive tire wear could occur. The tires would display indentations on the road contact surfaces of the tread. Also, a rapid wear on the steering axle could occur usually in a feathered-edge pattern. See Fig. 11.

Feathered-edging more often affects the front tire on the passenger’s side of the vehicle, and is usually more apparent on the outside grooves of the tire.

If any of these listed conditions occur, the vehicle could need a front end alignment.

Toe-In Inspection
For vehicle alignment to be accurate, the shop floor must be level in every direction. The turn plates for the front wheels must rotate freely without friction, and the alignment equipment must be calibrated every three months by a qualified technician from the equipment manufacturer. Western Star dealers must have proof of this calibration history.

1. Apply the parking brakes and chock the rear tires.

2. Raise the front of the vehicle until the tires clear the ground. Check that the safety stands will support the combined weight of the cab, axle, and frame. Place safety stands under the axle.

3. Using spray paint or a piece of chalk, mark the entire center rib of each front tire.

4. Place a scribe or pointed instrument against the marked center rib of each tire, and turn the tires. The scribe must be held firmly in place so that a single straight line is scribed all the way around each front tire.

5. Place a turn-plate or turntable under each front tire. Remove the safety stands from under the

Fig. 10, Tire Wear Due to Excessive Camber

Fig. 11, Tire Wear Due to Excessive Toe-In
axle, then lower the vehicle. Remove the lock-
pins from the gauges; make sure the tires are exactly straight ahead.

NOTE: If turn-plates or turntables are not avail-
able, lower the vehicle. Remove the chocks from the rear tires and release the parking brakes. Move the vehicle backward and then forward about six feet (two meters).

6. Place a trammel bar at the rear of the front tires; locate the trammel pointers at spindle height, and adjust the pointers to line up with the scribe lines on the center ribs of the front tires. See Fig. 12. Lock the pointers in place. Check that the scale is set on zero.

7. Place the trammel bar at the front of the tires, see Fig. 13, and adjust the scale end so that the pointers line up with the scribe lines. See Fig. 14.

8. Read the toe-in from the scale. Toe-in should be in the range of -1/32 to +3/32 inch. If corrections are needed, take the vehicle to your Western Star Dealer to adjust the toe-in. The Toe-in should be set as close as possible to +1/32 inch.

33–08 Steer Axle Hub Cap Vent Plug Inspection

General Information

As a function of their design, hubcap vent plugs will on occasion exhibit signs of hub oil on their exterior surface. Depending on environmental conditions and/or age of the plug, the amount of oil present can vary. This is a normal result of the venting process.
due to pressure increase within the hub cavity. For an example of normal vent plug appearance, see **Fig. 15**.

A vent plug can wear or be damaged and cause excessive leakage, or allow water to enter the hub and contaminate the oil. For examples of a leaking vent plug, see **Fig. 16** and **Fig. 17**. Evidence of a leaking vent plug may appear as:

- Oil splatter around the wheel
- Gooey/gummy oil around the vent plug purge point
- Hub/plug area is dirty, and water contaminated oil in the hub.
- Hub/plug area is clean, but there is water contaminated oil in the hub. (pressure washing is the most likely cause)

Inspection

NOTICE

Only remove vent plugs by hand. They can be damaged if a tool is used. Wipe the hub/plug area clean before checking the oil. Do not use a pressure washer to clean the hub/plug area. The plug has a vent and this can contaminate the oil with water.

1. Park the vehicle on a level surface, shut down the engine and set the parking brakes. Chock the tires.
2. Inspect the axle hub cap and vent plug for evidence of excessive leakage.
3. Wipe the hub cap and vent plug clean with a rag.
4. Remove the vent plug and check the oil for evidence of water contamination. If there is evidence of water contaminated oil in the hub, disassemble the effected axle end, clean, inspect, and reassemble the axle end. For instructions, refer to Group 33 of the vehicle’s Workshop Manual. If there is evidence of excessive leakage, remove the damaged part and replace it with a new part.

5. Check the oil level in the hub, and fill the hub with new approved oil as needed.
### Title of Maintenance Operation (MOP)	MOP Number
Axle Lubricant and Filter Change, and Magnetic Strainer Cleaning and Check | 35–04
Drive Axle Breather Check | 35–03
Drive Axle Lubricant Level Check | 35–01
Safety Precautions | 35–00
Two-Speed-Axle Shift Unit Lubricant Level Check | 35–02
35–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

35–01 Drive Axle Lubricant Level Check

NOTICE

Failure to keep the rear axle filled to the proper level with the recommended lubricant can result in rear axle damage.

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.
2. If the vehicle has just been driven, allow a few minutes for the lubricant to settle.
3. Clean the oil fill hole plug (located in the carrier or the side of the axle housing) and the area surrounding it, then remove the plug. For Detroit axles, see Fig. 1; for Meritor axles, see Fig. 2; for Dana Spicer axles, see Fig. 3.

NOTE: Some Detroit and Meritor axles have a small tapped and plugged hole located below the housing oil fill hole. This smaller hole is for the lubricant temperature sensor only and must not be used as a fill or level hole.

IMPORTANT: A lubricant level close enough to be seen or touched is not sufficient. It must be level with the bottom of the fill hole.

4. Check the level of the lubricant. The lubricant must be level with the bottom of the oil fill hole (see Fig. 4). If low, check for oil leaks (and make corrections as needed), and add oil to the level of the fill plug.

FOR DETROIT AXLES, SEE TABLE 1 FOR APPROVED AXLE LUBRICANTS AND TABLE 2 FOR LUBRICANT CAPACITIES.

FOR MERITOR AXLES, SEE TABLE 3 FOR APPROVED AXLE LUBRICANTS, AND TABLE 4 AND TABLE 5 FOR AXLE CAPACITIES.
For Dana Spicer axles, see Table 6 for approved axle lubricants, and Table 7 for axle capacities.

5. Install the oil fill hole plug and tighten it per the following:
 - For Detroit axles: 30 lbf-ft (41 N·m).
 - For Meritor axles: 35 lbf-ft (47 N·m).
 - For Dana Spicer axles: 50 lbf-ft (68 N·m).

6. On non-drive axles using oil-lubricated wheel bearings, clean the hub cap and plug to minimize the possibility of dirt and road grime entering the assembly. Remove the plug, and check the oil level. If low, add fluid using the same lubricant recommended for the drive axle.

Detroit Drive Axle Lubricants*

IMPORTANT: Lubricant used in Detroit rear axles must meet Mercedes-Benz specification 235.20 (mineral) or 235.8 (synthetic). Mobil Delvac™ Gear Oil A 80W-90 and Mobilube™ HD-A Plus 80W-90 meet specification 235.20. Mobil Delvac 1 Gear Oil 75W-90 and Mobilube 1 SHC 75W-90 meet specification 235.8. For more product information, see http://bevo.mercedes-benz.com.

<table>
<thead>
<tr>
<th>Type</th>
<th>Ambient Temperature</th>
<th>SAE Viscosity Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Oil</td>
<td>−15°F (−26.1°C) and up†</td>
<td>80W–90</td>
</tr>
<tr>
<td>Synthetic Oil</td>
<td>−40°F (−40°C) and up†</td>
<td>75W–90</td>
</tr>
</tbody>
</table>

† Detroit rear axles do not require the use of friction modifiers.

Table 1, Detroit Drive Axle Lubricants
Detroit Rear Axle Lubricant Capacity (Hubs Full)

<table>
<thead>
<tr>
<th>Axle</th>
<th>Oil Capacity: Quarts (liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single, Model 2</td>
<td>5.8 (5.5)*</td>
</tr>
</tbody>
</table>

* These values assume the wheel ends are properly lubricated. Actual oil capacity might vary slightly depending on gear ratio.

Table 2, Detroit Rear Axle Lubricant Capacity

<table>
<thead>
<tr>
<th>Lubricant Type</th>
<th>Ambient Temperature</th>
<th>Viscosity Grade</th>
<th>Meritor Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Extended Drain Lubricants</td>
<td>10°F (–12.2°C) and up*</td>
<td>85W–140</td>
<td>0–76–A</td>
</tr>
<tr>
<td></td>
<td>–15°F (–26.1°C) and up*</td>
<td>80W–140</td>
<td>0–76–B</td>
</tr>
<tr>
<td></td>
<td>–15°F (–26.1°C) and up*</td>
<td>80W–90</td>
<td>0–76–D</td>
</tr>
<tr>
<td></td>
<td>–40°F (–40°C) and up*</td>
<td>75W–90</td>
<td>0–76–E</td>
</tr>
<tr>
<td></td>
<td>–40°F (–40°C) to 35°F (2°C)</td>
<td>75W</td>
<td>0–76–J</td>
</tr>
<tr>
<td>Extended Drain Lubricants</td>
<td>–40°F (–40°C) and up*</td>
<td>75W–140</td>
<td>0–76–L</td>
</tr>
<tr>
<td></td>
<td>–40°F (–40°C) and up*</td>
<td>75W–90</td>
<td>0–76–N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75W–140</td>
<td>0–76–M</td>
</tr>
</tbody>
</table>

* There is no upper limit on the ambient temperature, but axle sump temperature must never exceed 250° (121°C).

Table 3, Meritor Drive Axle Recommended Lubricant

Meritor Drive Axle Lubricant Capacities for Single Axles

<table>
<thead>
<tr>
<th>Axle Model</th>
<th>Capacity*: Pints (liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS–23–160</td>
<td>39.5 (18.7)</td>
</tr>
<tr>
<td>RS–23–161</td>
<td>37.2 (17.6)</td>
</tr>
<tr>
<td>RS–23–186</td>
<td>47.3 (22.4)</td>
</tr>
<tr>
<td>RS–25–160</td>
<td>37 (17)</td>
</tr>
<tr>
<td>RS–26–185</td>
<td>46.0 (22.0)</td>
</tr>
<tr>
<td>RS–30–185</td>
<td>46.0 (22.0)</td>
</tr>
<tr>
<td>RS–30–380</td>
<td>58.2 (27.5)</td>
</tr>
<tr>
<td>RS–38–380</td>
<td>53.1 (25.1)</td>
</tr>
</tbody>
</table>

* Quantities listed are approximate and include 1 pint (0.5 liter) for each wheel end and with the drive pinion at 3 degrees.

Table 4, Meritor Drive Axle Lubricant Capacities for Single Axles

Meritor Drive Axle Lubricant Capacities for Tandem Axles

<table>
<thead>
<tr>
<th>Axle Model</th>
<th>Axle Position</th>
<th>Capacity*: Pints (liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT–40–14X</td>
<td>Forward</td>
<td>30 (14.2)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>32 (15.14)</td>
</tr>
<tr>
<td>RT–40–145</td>
<td>Forward</td>
<td>30.2 (14.3)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>25.8 (12.2)</td>
</tr>
<tr>
<td>RT–40–145P</td>
<td>Forward</td>
<td>30.2 (14.3)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>25.8 (12.2)</td>
</tr>
<tr>
<td>RT–40–160</td>
<td>Forward</td>
<td>39.1 (18.5)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>34.4 (16.3)</td>
</tr>
<tr>
<td>RT–44–145</td>
<td>Forward</td>
<td>29.3 (13.9)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>25.1 (11.9)</td>
</tr>
<tr>
<td>RT–44–145P</td>
<td>Forward</td>
<td>39.1 (18.5)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>34.4 (16.3)</td>
</tr>
<tr>
<td>RT–46–160</td>
<td>Forward</td>
<td>38.0 (18.0)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>33.0 (15.0)</td>
</tr>
</tbody>
</table>
Meritor Drive Axle Lubricant Capacities for Tandem Axles

<table>
<thead>
<tr>
<th>Axle Model</th>
<th>Axle Position</th>
<th>Capacity*</th>
<th>Pints (liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT–50–160</td>
<td>Forward</td>
<td>38.0</td>
<td>(18.0)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>33.0</td>
<td>(15.0)</td>
</tr>
<tr>
<td>RT–52–185</td>
<td>Forward</td>
<td>56.1</td>
<td>(26.5)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>36.1</td>
<td>(17.1)</td>
</tr>
<tr>
<td>RT–58–185</td>
<td>Forward</td>
<td>56.1</td>
<td>(26.5)</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>36.1</td>
<td>(17.1)</td>
</tr>
</tbody>
</table>

* Quantities listed are approximate and include 1 pint (0.5 liter) for each wheel end and with the drive pinion at 3 degrees.

Table 5, Meritor Drive Axle Lubricant Capacities for Tandem Axles

Dana Spicer Drive Axle Recommended Lubricant

<table>
<thead>
<tr>
<th>Lubricant Type</th>
<th>Condition</th>
<th>Lubricant SAE Viscosity Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dana Spicer Roadranger® Synthetic Drive Axle Lubricants, or Equivalent with Military Specification MIL–L–2105D</td>
<td>Over-the-Road Service</td>
<td>75W–90</td>
</tr>
<tr>
<td></td>
<td>Off-Highway Equipment, or Under Extra Heavy Loads</td>
<td>80W–140</td>
</tr>
</tbody>
</table>

Table 6, Dana Spicer Drive Axle Recommended Lubricant

Dana Spicer Drive Axle Lubricant Capacities

<table>
<thead>
<tr>
<th>Axle Model</th>
<th>Capacity*</th>
<th>Pints (liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD405</td>
<td>31</td>
<td>(14.7)†</td>
</tr>
<tr>
<td>DP463P</td>
<td>40</td>
<td>(18.9)†</td>
</tr>
</tbody>
</table>

* Quantities listed are approximate. Fill axle until lubricant is level with bottom of fill hole with vehicle on level ground.
† Add 2 pints (1 L) of additional lubricant to the power divider.

Table 7, Dana Spicer Drive Axle Lubricant Capacities

CAUTION

Failure to keep the two-speed-axle shift unit filled to the proper level with the recommended lubricant can result in shift unit damage.

1. Clean the oil fill plug and the area surrounding it. Remove the fill plug. See Fig. 6.
2. Lubricant should be level with the bottom of the fill hole. If lubricant level is low, check for leaks and have them corrected. Add lubricant as required. Use the same lubricant as the drive axle.

35–02 Two-Speed-Axle Shift Unit Lubricant Level Check

CAUTION

Failure to keep the two-speed-axle shift unit filled to the proper level with the recommended lubricant can result in shift unit damage.

1. Clean the oil fill plug and the area surrounding it. Remove the fill plug. See Fig. 6.
2. Lubricant should be level with the bottom of the fill hole. If lubricant level is low, check for leaks and have them corrected. Add lubricant as required. Use the same lubricant as the drive axle.

35–03 Drive Axle Breather Check

Axle breathers must NOT be clogged. Whenever the axle lubricant level is checked, be sure the axle breather is also checked. If operating under adverse conditions, check the breathers more often. If the breather is damaged or plugged, have it cleaned or replaced. For the location of the breather on Detroit axles, see Fig. 1; for Meritor axles, see Fig. 2; and for Dana Spicer axles, see Fig. 3.
35–04 Axle Lubricant and Filter Change, and Magnetic Strainer Cleaning and Check

NOTICE

When operating under adverse conditions, it may be necessary to change the axle lubricant at more frequent intervals than listed in the scheduled maintenance tables. Failure to do so could result in axle damage.

Detroit™

IMPORTANT: On Detroit axles, the oil change interval for long haul vehicles can be extended to 500,000 miles (800 000 km) for axles with weight ratings of 34,000 to 40,000 lb (15 000 to 18 000 kg) using synthetic lubricant if a lubricant analysis shows adequate quality. Oil must be changed at least every four years, and more often if the axle is exposed to high temperatures and steep grades.

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.

2. Clean the fill plug and the area around it. In the axle housing rear cover, remove the plug from the oil fill hole. See Fig. 1.

CAUTION

Be careful when draining the axle oil. It may be very hot, and could cause personal injury if it contacts the skin.

3. Place a drain pan under the rear axle drain plug. Drain the oil when it is warm. At this temperature, the oil will run more freely and ensure that the axle is flushed.

4. Clean the fill and drain plugs. Change them if necessary.

 4.1 For magnetic plugs, use a piece of key stock or any other convenient steel slug to short the two magnetic poles and divert the magnetic field.

 4.2 Clean away the collected material deposited on each pole. Magnets will rapidly lose their effectiveness as collected material bridges the gap between the two poles.

 4.3 After the first oil is changed, inspect the drain plug each time for large quantities of metal particles.

 4.4 After cleaning, install the drain plug(s) and tighten to 30 lbf-ft (41 N·m).

5. Fill the axle with the recommended lubricant. See Table 1 for recommended drive axle lubricants and Table 2 for lubricant capacities.

NOTE: Some Detroit axles have a small tapped and plugged hole near and below the housing oil fill hole. This smaller hole is for a lubricant temperature indicator only, and should not be used as a fill or level hole.

5.1 Fill the axle through the oil fill hole. Lubricant should be level with the bottom of the oil fill hole. To check fluid level, see Fig. 4.

5.2 Install and tighten the fill plug 30 lbf-ft (41 N·m).
Detroit™ New Final Drive

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.

2. Clean the fill plug and the area around it. In the carrier housing, remove the plug from the oil fill hole. See Fig. 7 for the forward axle, and Fig. 8 for the rear axle.

![Fig. 7, Detroit™ New Final Drive Forward Axle, Oil Fill Location](image)

![Fig. 8, Detroit™ New Final Drive Rear Axle, Oil Fill Location](image)

CAUTION

Be careful when draining the axle oil. It may be very hot, and could cause personal injury if it contacts the skin.

3. Place a drain pan under the rear axle drain plug. Drain the oil when it is warm. At this temperature, the oil will run more freely and ensure that the axle is flushed.

4. Clean the fill and drain plugs. Change them if necessary.

 4.1 For magnetic plugs, use a piece of key stock or any other convenient steel slug to short the two magnetic poles and divert the magnetic field.

 4.2 Clean away the collected material deposited on each pole. Magnets will rapidly lose their effectiveness as collected material bridges the gap between the two poles.

 4.3 After the first oil is changed, inspect the drain plug each time for large quantities of metal particles.

5. Fill the axle with the recommended lubricant. See Table 8 for recommended drive axle lubricants and Table 9 for lubricant capacities.

 5.1 Fill the axle through the oil fill hole. Lubricant should be level with the bottom of the oil fill hole.

 5.2 Install and tighten the fill plug 30 lbf-ft (41 N-m).

<table>
<thead>
<tr>
<th>Detroit Drive Axle Lubricant, New Final Drive*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricant</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Must meet Detroit Fluids Specification (DFS) 93K219.03</td>
</tr>
</tbody>
</table>

* Detroit rear axles do not require the use of friction modifiers.
† There is no upper limit on the ambient temperature, but axle sump temperature must never exceed 250°F (121°C).

Table 8, Detroit Drive Axle Lubricants, New Final Drive
New Final Drive Oil Capacity, New Final Drive

<table>
<thead>
<tr>
<th>Axle Type</th>
<th>Oil in Hubs (2)</th>
<th>Oil in Axle</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFD Model 4 Forward Axle TP</td>
<td>1.8 L</td>
<td>9 L</td>
</tr>
<tr>
<td>NFD Model 4 Rear Rear Axle TP</td>
<td>1.8 L</td>
<td>7.5 L</td>
</tr>
<tr>
<td>NFD Model 4 Forward Axle SP</td>
<td>1.8 L</td>
<td>14 L</td>
</tr>
<tr>
<td>NFD Model 4 Rear Rear Axle SP</td>
<td>1.8 L</td>
<td>11 L</td>
</tr>
<tr>
<td>NFD Model 6 TP</td>
<td>1.8 L</td>
<td>9.5 L</td>
</tr>
<tr>
<td>NFD Model 6 SP</td>
<td>1.8 L</td>
<td>11 L</td>
</tr>
</tbody>
</table>

Table 9, New Final Drive Oil Capacity, New Final Drive

Meritor Axles

IMPORTANT: If using synthetic lubricant, the lubricant change interval is extended to 100,000 miles (160 000 km). On axles with a pump and filter system, the filter change interval is 100,000 miles (160 000 km).

1. Park the vehicle on level ground, apply the parking brakes, and chock the front tires.

NOTE: Some Meritor axles have a small tapped and plugged hole near and below the housing lubricant fill hole. This smaller hole is for a lubricant temperature indicator only, and should not be used as a fill or level hole.

2. Clean the area around the fill plug, then remove the fill plug.

3. Place a drain pan under the drain plug, then remove the drain plug from the bottom of the housing. Completely drain the lubricant while the unit is warm, to allow the lubricant to drain faster.

4. If equipped with an oil pump, replace the filter.

NOTE: There may be about one pint (0.5 L) of lubricant remaining in the filter.

4.1 Remove the axle oil filter using a suitable filter strap wrench (see Fig. 10) and discard it.

4.2 Using recommended drive axle lubricant (see Table 3), coat the face of the gasket on the new oil filter.

4.3 Install the filter over the adapter, and tighten the filter one full turn after the gasket contacts the base; do not overtighten.

5. Clean the fill and drain plugs as follows. Change them if necessary.

5.1 For magnetic plugs, use a piece of key stock or any other convenient steel slug to short the two magnetic poles and divert the magnetic field.

5.2 Check the drain plug for metal particles every 100,000 miles (160 000 km). Clean away the collected material deposited on each pole. Magnets will rapidly lose their effectiveness as collected material bridges the gap between the two poles.

5.3 Meritor recommends plugs with elements having a minimum pickup capacity of 1.5 pounds (0.7 kg) of low-carbon steel. Each time the oil is changed, replace any mag-
5.4 Install the drain plug(s) and tighten to 35 lbf·ft (47 N·m).

6. Fill the axle with recommended lubricant as follows. For lubricant capacities, see Table 4 (single axles) or Table 5 (tandem axles). See Table 3 for recommended lubricant.

6.1 With the vehicle on a level surface, fill the axle through the oil fill hole. Allow a few minutes for the oil to flow into the axle. Lubricant should be level with the bottom of the oil fill hole.

6.2 Check the fluid level; see Fig. 4.

6.3 Install and tighten the fill plug 35 lbf·ft (47 N·m).

7. Whenever the interaxle differential housing has been drained, add an additional 2 pints (0.9 L) of the recommended lubricant directly into the inter-axle differential housing.

8. Remove the chocks, then drive the vehicle, unloaded, for 1 or 2 miles (2 or 3 km) at speeds not to exceed 25 mph (40 km/h), to thoroughly circulate lubricant throughout the carrier and housing assemblies.

Dana Spicer Axles

NOTE: If using a Roadranger synthetic drive axle lubricant, the lubricant change interval is extended to 180,000 miles (288,000 km).

1. Park the vehicle on level ground, set the parking brakes, and chock the tires.

NOTE: Some Dana Spicer axles have a small tapped and plugged hole near and below the housing oil fill hole. This smaller hole is for a lubricant temperature indicator only, and should not be used as a fill or level hole.

2. Clean the oil fill plug and the area around it (see Fig. 3), then remove it from the oil fill hole.

3. Place a drain pan under the rear axle drain plug; see Fig. 3. Drain the oil at normal operating temperature, 150°F to 200°F (65°C to 93°C). At this temperature, the oil will run more freely and ensure that the axle is flushed.

NOTE: Some tandem-drive axles are equipped with a cylindrical magnetic strainer, located below the lube pump on the front of the power divider cover. All rear axles are fitted with magnetic drain and fill plugs.

4. At each axle oil change, remove and clean the magnetic strainer, if equipped, as follows.

4.1 Remove the magnetic strainer from the power divider cover. See Fig. 11.

WARNING

Always wear eye protection when using compressed air to clean parts, as flying debris could cause permanent damage to unprotected eyes. Do not point the air stream in the direction of other persons.

4.2 Wash the strainer in solvent, and blow it dry with compressed air to remove oil and metal particles.

4.3 Install and tighten the magnetic strainer 40 to 60 lbf·ft (54 to 81 N·m).

5. Clean the fill and drain plugs as follows. Change them if necessary.

5.1 For magnetic plugs, use a piece of key stock or any other convenient steel slug.
5.2 Clean away the collected material deposited on each pole. Magnets will rapidly lose their effectiveness as collected material bridges the gap between the two poles.

5.3 Inspect the drain plug for large quantities of metal particles.

5.4 After cleaning, install the drain plug(s) and tighten to 40 to 60 lbf-ft (54 to 81 N·m).

IMPORTANT: The use of friction modifiers is not approved in Dana drive axles.

6. Fill the axle with the recommended lubricant as follows. See Table 6 for recommended lubricants, and Table 7 for drive axle lubricant capacities.

6.1 With the vehicle on a level surface, fill the axle through the oil fill hole. Lubricant should be level with the bottom of the oil fill hole.

6.2 Check the fluid level; see Fig. 4.

6.3 Install and tighten the fill plug 50 lbf-ft (68 N·m).
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire Check</td>
<td>40–02</td>
</tr>
<tr>
<td>Wheel Nut and Rim Nut Torque Check</td>
<td>40–01</td>
</tr>
</tbody>
</table>
40–01 Wheel Nut and Rim Nut Torque Check

⚠ CAUTION ⚠

Insufficient wheel nut (rim nut) torque can cause wheel shimmy, resulting in wheel damage, stud breakage, and extreme tire tread wear. Excessive wheel nut torque can break studs and clamps (if so equipped), damage threads, and crack discs in the stud hole area. Use the recommended torque values, and follow the tightening sequence shown in Fig. 1.

After an 8- or 10-stud wheel has been installed, the wheel or rim nut torque must be rechecked after 50 to 100 miles (80 to 161 km) of operation.

See Table 1 for wheel nut torque specifications, and see Fig. 1 for the wheel nut tightening sequence.

When checking wheel nuts on a dual disc assembly, remove one outer nut at a time, tighten the inner nut, then reinstall the outer nut. Repeat this procedure for all wheel nuts, using the tightening sequence shown in Fig 1.

After a 12-stud wheel rim has been installed, the wheel or rim nut torque must be rechecked as follows:

- after the first load;
- every four hours of operation for a minimum of five days;
- every 8 to 10 hours of operation.

When checking wheel or rim nut torque on 12-stud wheel rims, use the tightening sequence shown in Fig. 1 for each of the three stages of tightening as follows:

1. Tighten each nut 50 lbf-ft (68 N·m).
2. Tighten each nut 100 lbf-ft (136 N·m).
3. Tighten each nut 150 lbf-ft (203 N·m).
Wheel Fastener Torque

<table>
<thead>
<tr>
<th>Application</th>
<th>Nut Size</th>
<th>Wheel Manufacturer</th>
<th>Torque (dry threads): lbf·ft (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Stud Disc Wheel With Two-Piece Flanged Locknuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front and Rear Wheel Nut</td>
<td>M22 x 1.5</td>
<td>All</td>
<td>450–500 (610–680)*</td>
</tr>
<tr>
<td>10-Stud Disc Wheel With Two-Piece Flanged Nuts</td>
<td>M22 x 1.5</td>
<td>All</td>
<td>450–500 (610–680)*</td>
</tr>
<tr>
<td>Front Wheel Nut</td>
<td>1-1/8–16</td>
<td>Alcoa</td>
<td>400–500 (540–680)</td>
</tr>
<tr>
<td>Rear Wheel Inner Nut</td>
<td>3/4–16</td>
<td>Alcoa</td>
<td>400–500 (540–680)</td>
</tr>
<tr>
<td>Rear Wheel Outer Nut</td>
<td>1-1/8–16</td>
<td>Alcoa</td>
<td>400–500 (540–680)</td>
</tr>
<tr>
<td>Wheel Stud Retainer Nut</td>
<td>3/4–16</td>
<td>All</td>
<td>175–200 (235–270)</td>
</tr>
<tr>
<td>12-Stud Wheel Rim Clamp and Nuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptor Wheel Nut on Inside Bolt Circle</td>
<td>M22 x 1.5</td>
<td>OTR</td>
<td>450–500 (610–680)</td>
</tr>
<tr>
<td>Adaptor Wheel Nut on Outside Bolt Circle</td>
<td>3/4–10</td>
<td>OTR</td>
<td>50 (68)† 100 (136) 150 (203)</td>
</tr>
</tbody>
</table>

Fig. 1, Wheel Nut and Rim Nut Tightening Sequence

- A. 8-Stud Disc Wheel
- B. 10-Stud Disc Wheel
- C. 6-Spoke Wheel
- D. 5-Spoke Wheel
- E. 12-Stud Wheel Rim
- F. 12-Stud Wheel Rim Adaptor
Wheel Fastener Torque

<table>
<thead>
<tr>
<th>Application</th>
<th>Nut Size</th>
<th>Wheel Manufacturer</th>
<th>Torque (dry threads): lbf·ft (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear Wheel Nut</td>
<td>3/4–10</td>
<td>OTR</td>
<td>50 (68)†, 100 (136), 150 (203)</td>
</tr>
<tr>
<td>Spoke Wheel Rim Nuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Wheel Nut, 5- and 6-Spoke</td>
<td>3/4–10</td>
<td>Gunite</td>
<td>200–225 (271–305)‡</td>
</tr>
<tr>
<td>Rear Wheel Nut, 5- and 6-Spoke With</td>
<td>3/4–10</td>
<td>Gunite</td>
<td>200–225 (271–305)</td>
</tr>
<tr>
<td>Non-Corrugated Channel Spacer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated Channel Spacer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Torque values given for these fasteners are for lubricated threads.
‡ Use the tightening sequence shown in Fig. 1 for each of the three stages of tightening.
‡ On front axles with over 12,000 lb (5448 kg) capacity, tighten the wheel nuts 240 to 265 lbf·ft (325 to 359 N·m). Gunite part number W–854 nut with a phosphate-and-oil coating must be used.

Table 1, Wheel Fastener Torque

For additional information on 12-stud wheel rims, see Section 40.00, Subject 220 of the Western Star Workshop Manual.

40–02 Tire Check

Tires should be inspected closely during the first 3000 to 10,000 miles (5000 to 16 000 km) for abnormal wear.

Maintain the proper pressures for carried loads, per the tire manufacturers’ recommendations, or the tire pressure label on the driver’s door.

Have the wheel alignment checked after the first 10,000 miles (16 000 km), then every 40,000 miles (60 000 km) thereafter.

Do not continue to drive the vehicle if tires develop any of the following:

- blisters;
- cuts or punctures that reach to the cord;
- a nail, screw, rock, or other puncturing object;
- flat spots or irregular wear;
- tread worn to a minimum depth;
- inability to maintain proper tire pressure.
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driveline Inspection</td>
<td>41–01</td>
</tr>
<tr>
<td>Driveline Lubrication</td>
<td>41–02</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>41–00</td>
</tr>
</tbody>
</table>
41–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

41–01 Driveline Inspection

1. Park the vehicle on a flat, level surface, apply the parking brakes, and chock the tires.

CAUTION

Due to the extreme load occurring at high-speed rotation, a loose or broken capscrew at any point in the driveline will weaken the driveline connection, which could eventually result in serious vehicle damage. Do not over-tighten bearing-cap capscrews or yoke-strap capscrews.

2. For driveline universal joints with bearing caps, tighten bearing-cap capscrews 43 lbf·ft (49 N·m). See Fig. 1, item 1.

 For RPL series universal joints, tighten bearing-cap capscrews 125 lbf·ft (169 N·m). See Fig. 2.

 For driveline universal joints with yoke straps, tighten yoke-strap capscrews 125 lbf·ft (169 N·m). See Fig. 3.

3. Check the driveline yokes for cracks, and check end-yokes for looseness. See Fig. 3.

 Have any cracked yokes replaced by an authorized Western Star dealer.

 If any end-yoke can be moved in or out on its shaft, or can be rocked on its shaft, take it to an authorized Western Star dealer for service.

4. Check U-joint assemblies for wear by moving the driveshaft up and down, and from side to side. If any movement of the U-joint cross in the bearings can be felt or seen, have the U-joint assembly replaced.

5. Check if the midship bearing and mounting are loose or have deteriorated, by attempting to move the driveshaft up and down, and from side to side. If the bearing is loose on its shaft, or rattles, have it replaced. If the bearing mount is loose on the frame, have your Western Star dealer tighten the mounting fasteners to the proper torque value. Have the midship bearing assembly replaced if the rubber cushion is deteriorated or oil-soaked.

6. Check slip joints for spline wear by moving the sleeve-yoke and splined shaft back and forth.
See Fig. 4. If the slip joint can be twisted in a clockwise or counterclockwise movement greater than 0.007 inch (0.18 mm), have both the sleeve-yoke and the splined shaft replaced.

7. Visually examine the driveshaft tubes for dents, bends, twists, or other damage. If any tube appears to be damaged, have it repaired or replaced by an authorized Western Star dealer.

8. Examine the driveshaft for evidence of missing balance weights, and for build-up of foreign material. Remove any foreign material. If there is any evidence that balance weights are missing, have the driveshaft removed and balanced.

9. For driveshafts with slip joints, check to be sure the yoke plug is not loose or missing. See Fig. 5, item 2. Have your Western Star dealer repair or replace the yoke plug as needed. If the yoke plug is missing, the splined shaft may be hitting the plug and knocking it out; have your Western Star dealer determine the correct driveshaft length.
Universal Joint Lubrication

NOTE: Vehicles equipped with Meritor RPL Series drivelines do not require periodic lubrication.

1. Park the vehicle on a flat surface, apply the parking brakes, and chock the tires.

2. Wipe all old grease and dirt from each U-joint grease fitting. See Fig. 5, Ref. 8.

3. Use a hand-type grease gun, or a high-pressure gun with a low-pressure adapter, to lubricate U-joints. If a low-pressure adapter is not used, U-joints may not receive enough grease.

 Using lithium 12-Hydroxy stearate grease (NLGI Grade 1 or Grade 2, with EP additives), lubricate until new grease can be seen at all four U-joint seals. Fresh grease must be seen escaping from all four bearing-cap seals of each U-joint. On yokes equipped with a yoke-bearing cap, if most of the grease being added to a U-joint can be seen escaping from just one of the U-joint seals, check the torque on the capscrews at that seal.

4. Tighten the bearing-cap capscrews 43 lbf-ft (49 N-m). If the capscrews were already tight, or all of the U-joint seals still do not purge, remove the bearing cap at that seal, and examine the seal for damage. If the seal is damaged, replace the complete U-joint.

5. If grease does not appear at one seal, use a prying tool to pry the U-joint trunnion away from the non-purging seal, or tap the driveshaft or yoke with a plastic or rawhide mallet on the side opposite the dry seal, while continuing to lubricate. If grease still does not appear, loosen the capscrews at the bearing with the dry seal, to relieve seal tension. Lubricate the U-joint until new grease is seen at the seal, then tighten the capscrews to the correct torque specifications. If the bearing will not take grease, have the U-joint replaced.

6. Check the purged grease. If it appears rusty, gritty, or burned, have the U-joint replaced.

7. Wipe the purged grease from the seals, and any excess grease from the grease fitting.

Fig. 4, Slip Joint Spline Wear Checking

Fig. 5, Slip Joint and U-Joint Lubrication

A. After grease appears, cover the pressure-relief hole while continuing to lubricate.

1. Slip Joint Grease Fitting (with grease gun attached)
2. Yoke Plug
3. Grease
4. Half-Round Yoke
5. Yoke Plug Pressure-Relief Hole
6. Slip Joint Seal
7. Full-Round Yoke
8. U-Joint Grease Fitting
Slip Joint Spline Lubrication

NOTE: Vehicles equipped with Meritor RPL Series drivelines do not require periodic lubrication.

1. If equipped with a grease fitting, wipe all old grease and dirt from the slip joint grease fitting. See Fig. 5, Ref. 1.

2. Use a hand-type grease gun or a high-pressure gun with a low-pressure adapter, to lubricate the slip joint. Add multipurpose chassis grease (lithium 12-hydroxy stearate, NLGI Grade 1 or Grade 2, with EP additives) until it appears at the pressure-relief hole in the yoke plug. Then cover the relief hole with your finger, while continuing to apply gun pressure until new grease appears at the slip joint seal. See Fig. 5. This ensures complete lubrication of the splines.

3. Wipe the purged grease from the pressure-relief hole and slip joint seal, and any excess grease from the grease fitting.
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Brake System Valve Inspection</td>
<td>42–01</td>
</tr>
<tr>
<td>Air Dryer Desiccant Replacement</td>
<td>42–03</td>
</tr>
<tr>
<td>Air Dryer Inspection</td>
<td>42–02</td>
</tr>
<tr>
<td>Alcohol Evaporator Cleaning and Inspection</td>
<td>42–04</td>
</tr>
<tr>
<td>Bendix Automatic Drain Valve Operating and Leakage Tests</td>
<td>42–09</td>
</tr>
<tr>
<td>Brake Inspection</td>
<td>42–07</td>
</tr>
<tr>
<td>Camshaft Bracket Lubrication</td>
<td>42–05</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>42–00</td>
</tr>
<tr>
<td>Slack Adjuster Lubrication</td>
<td>42–06</td>
</tr>
<tr>
<td>Versajust Slack Adjuster Inspection and Lubrication</td>
<td>42–08</td>
</tr>
</tbody>
</table>
42–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

⚠️ DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

42–01 Air Brake System Valve Inspection

NOTE: There is no scheduled air valve maintenance on vehicles equipped with Bendix air valves and a Bendix air dryer if the air dryer desiccant is replaced at 350,000 miles (563 000 km). If the desiccant is not changed at 350,000 miles (563 000 km), or if the vehicle is equipped with another air dryer, maintenance will have to be performed on the air brake valves.

IMPORTANT: For vehicles equipped with an oil-coalescing air dryer desiccant cartridge, replace the cartridge once a year, regardless of mileage.

42–02 Air Dryer Inspection

1. Park the vehicle on a level surface and apply the parking brakes. Shut down the engine. Chock the tires.
2. Completely drain all air reservoirs. Air pressure gauges should read 0 psi (0 kPa).
3. Close the drain cocks on all reservoirs.
4. Start the vehicle and allow the air system pressure to build while the engine idles.

Note: Some compressors may need to run above idle to build system air pressure in a reasonable time. If air pressure build-up is extremely slow after two to three minutes, raise the engine speed to 1000 to 2000 rpm.

5. Place your hand under the air dryer purge valve, located at the base of the dryer; see Fig. 1. You should feel a light air flow that will continue until the air compressor unloads.

6. On the System Saver Twin only, if the compressor continues to run, after 50 to 60 seconds you will feel a "mini-purge", or exhaust of air, as the dryer switches cartridges. This is normal and will recur every 50 to 60 seconds as long as the compressor is running.

7. When the air system reaches "cut-out" pressure, the dryer will purge completely. After this, the dryer will not exhaust any air until the compressor starts up again.

8. Shut off the engine and apply a soap solution to each connection that contains pressurized air. If soap bubbles do not appear, connections are sealed properly. If soap bubbles appear, drain all reservoirs and remove the leaking connection. Inspect it for damaged threads or cracks, and replace as necessary. Apply pipe sealant or teflon tape to the connection before re-installing it. Repeat the process until all connections are properly sealed.
42-03 Air Dryer Desiccant Replacement

IMPORTANT: For vehicles equipped with an oil-coalescing air dryer desiccant cartridge, replace the cartridge once a year, regardless of mileage.

Bendix AD-9 Air Dryers

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.
2. Completely drain all air reservoirs. Air pressure gauges should read 0 psi (0 kPa).

IMPORTANT: The compressor discharge line may still contain residual air pressure.
3. Identify, tag, and disconnect the three air lines from the end cover.
4. Disconnect the harness connector from the heater and thermostat assembly.
5. Loosen the capscrew that secures the upper mounting bracket strap.
6. Remove the two capscrews that secure the air dryer to the lower mounting bracket. Mark the position of the mounting bracket to the end cover and mark the capscrews to ease installation.
7. Remove the upper mounting bracket strap cap-screw, and remove the air dryer from the vehicle.
8. Place the air dryer on a bench and remove the remaining 6 capscrews, 12 washers, 6 Nylok® nuts, and the air dryer housing; see Fig. 2. Discard the Nylok nuts. Remove the end-cover-to-housing O-ring.
9. Clamp the desiccant cartridge in a vise.

WARNING

Clamping the end cover or housing in a vise could seriously compromise the air dryer’s ability to hold air pressure, which could cause a failure in the brake system, resulting in property damage, personal injury, or death.

10. Twist the end cover counterclockwise to release the cartridge from the end cover. Rotate the end cover until it completely separates from the desiccant cartridge.

NOTE: A substantial torque, up to 50 lbf·ft (68 N·m), may be necessary to remove the desiccant cartridge.
11. Inspect the condition of the O-ring seals. If they are cracked, crimped, or otherwise damaged, replace them to ensure an airtight seal. Clean the O-ring grooves of any dirt or obstruction.

NOTICE

Dirt or obstructions in the O-ring grooves can cause an O-ring failure that will result in an air leak.
12. Lubricate the O-rings with silicone or lithium grease, and install them in the end cover.
13. Install the desiccant cartridge on the end cover. Turn the cartridge clockwise until the desiccant cartridge makes contact with the end cover.
14. Place the desiccant cartridge in a vise, and turn the end cover clockwise an additional 180 to 225 degrees to fully tighten the desiccant cartridge to the end cover.

NOTE: Desiccant cartridge torque should not exceed 50 lbf·ft (68 N·m).
15. Place the housing over the desiccant cartridge and align the mounting holes with the end cover.

IMPORTANT: Replace, do not reuse the Nylok nuts on the air dryer cover.
16. Install the 6 capscrews, 12 washers, and 6 new Nylok nuts. Torque the capscrews in a star pattern 270 to 385 lbf-in (3050 to 4350 N-cm); see Fig. 3.
17. Install the air dryer on the lower mounting bracket. Install the two previously marked capscrews, four washers, and two new Nylok nuts. Torque the two remaining capscrews 270 to 385 lbf-in (3050 to 4350 N-cm). Install the capscrew, two washers, and a new Nylok nut in the upper mounting bracket strap. Torque the upper mounting bracket strap capscrew 80 to 120 lbf-in (904 to 1356 N-cm).
18. Connect and tighten the three air lines. Connect the harness connector to the heater and thermostat assembly until the lock tab snaps in place.
19. Start the engine, build air pressure, and check the air brake system for leaks.
Bendix AD–IP Air Dryers

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.
2. Using a wrench or a socket, loosen the desiccant cartridge bolt. Then separate the desiccant cartridge from the end cover.
3. Pull the cartridge bolt out of the cover and remove the cartridge.

WARNING
Do not attempt to disassemble the desiccant cartridge assembly. Parts for the assembly are not available and the cartridge contains a 150 lb spring that cannot be mechanically caged. Disassembly could release the spring, resulting in personal injury.
4. Remove and discard both O-rings from the cartridge bolt.

5. Using a clean rag, wipe clean the inside of the end cover. Clean the cartridge bolt bore in the end cover, and the sealing surfaces for the large- and small-diameter desiccant cartridge sealing rings.

6. Inspect the end cover for physical damage, then inspect all air line fittings for corrosion; replace as necessary.

7. Clean and inspect the bolt, paying attention to the threads and O-ring grooves.

IMPORTANT: Use only the grease supplied with Bendix replacement kits.

8. Lubricate the O-rings, bolt O-ring grooves, sealing rings, and cartridge grooves. Lubricate the end cover bore for the bolt.

9. Install both O-rings on the cartridge bolt, then, using a twisting motion, insert the assembled desiccant cartridge bolt in the end cover.

10. Install the desiccant cartridge on the end cover, making sure the cartridge is properly seated and flush on the end cover.

NOTE: It may be necessary to rotate the cartridge slightly until the anti-rotation lugs are properly aligned and allow the cartridge to rest flush against the end cover.

11. Using a wrench or socket, tighten the desiccant cartridge bolt 70 lbf-ft (95 N·m). **Do not over-tighten.**

12. Before placing the vehicle in service, perform the test below.

12.1 Close all reservoir drain cocks.

12.2 Build system pressure to governor cut-out, and note that the AD-IP air dryer purges with an audible escape of air.

12.3 Fan the service brakes to reduce system air pressure to governor cut-in. Note that the system once again builds to full pressure and is followed by a purge at the AD-IP air dryer exhaust.

12.4 Check for excessive leakage around the head of the desiccant cartridge where it contacts the end cover. With the compressor in loaded mode (compressing air), apply a soapy solution to these areas, and observe that any leakage does not exceed a 1-inch bubble in 1 second. If leakage exceeds this measure, remove and re-install the desiccant cartridge.

Bendix AD-9si, AD-IS and CR Turbo 2000 Air Dryers

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.

2. Drain the air reservoirs.

3. Using a strap wrench or equivalent, loosen the desiccant cartridge. See **Fig. 4**. Spin the cartridge off by hand and discard it.

4. On the new desiccant cartridge, lubricate the sealing rings with silicone grease.

IMPORTANT: Only use the silicone grease supplied with Bendix replacement kits.

5. Screw the desiccant cartridge onto the body by hand until the seal makes contact with the body. Rotate the cartridge clockwise about one full turn. Tighten the cartridge firmly.
WABCO System Saver 1200, 1200 Plus, and Twin Air Dryers

NOTICE

The WABCO System Saver air dryers can use either a standard or oil coalescing desiccant cartridge. When replacing the desiccant cartridge, it is very important to use the same type of cartridge that was originally installed on the dryer. Oil coalescing cartridges can be used in any application, but require more frequent service intervals (every 1 to 2 years instead of every 2 to 3 years for a standard cartridge). Do not replace an oil coalescing cartridge with a standard cartridge, as this may result in contamination and malfunctioning of downstream air system components.

Refer to Fig. 5 for cartridge replacement.

1. Drain the air system.
2. Using a strap wrench, turn the desiccant cartridge counterclockwise and remove it.
3. Remove and discard the O-ring.
4. Clean the top surface of the dryer base with a commercial cleaning solvent.
5. Using a multipurpose, high-temperature grease that resists water, steam, and alkali, lightly coat the surfaces of the new O-ring and the dryer base. Install the O-ring.
6. Thread the desiccant cartridge onto the dryer base (turn clockwise). When the seal contacts the base, tighten the cartridge one complete turn more. Do not overtighten.

42–04 Alcohol Evaporator Cleaning and Inspection

Midland

Maintenance is required during both the freeze season and the off season to keep the alcohol evaporator in good working order.

Off Season

During the off season, drain the unit of alcohol. At regular engine service intervals, open the drain cock.
to remove moisture from the alcohol evaporator. Before reactivating the evaporator for the next freeze season, drain, disassemble, inspect, and steam-clean the unit of any sludge that may have accumulated. It is advisable to replace any rubber parts when assembling the alcohol evaporator. Perform this service just before the freeze season.

Freeze Season Reactivation

1. Park the vehicle on a level surface and apply the parking brakes. Shut down the engine. Chock the tires.
2. Remove the filler cap, and check the cap tetraseal.
3. Remove the capscrews and reservoir from the cover.
4. Remove the cover tetraseal.
5. Drain the air tank, and disconnect the line from the evaporator outlet. Remove the check-valve retainer, spring, and disc.
6. Install the disc, spring, and check-valve retainer, and connect the line to the evaporator outlet.
7. Install the cover tetraseal.
8. Install the reservoir on the cover and tighten the capscrews.
9. Fill the reservoir with 40 ounces (1183 mL) of methyl alcohol, then install the filler cap.
10. Remove the chocks from the tires.

42–05 Camshaft Bracket Lubrication

IMPORTANT: Perform MOP 42–07 before lubricating the camshaft brackets.

NOTE: If equipped with a Meritor extended-maintenance Q Plus™ brake system, the camshaft bracket will not have a grease fitting. These camshafts use a special NLGI Grade synthetic polyurea grease, and do not require lubrication for 3 years or 500,000 miles (800,000 km), whichever comes first. The extended maintenance camshaft bushings are lubricated during the brake reline service interval.

For camshaft brackets with grease fittings, use an NLGI Grade 1 or Grade 2 multipurpose chassis grease.

Lubricate the camshaft bushings through the grease fitting on the camshaft bracket or the spider until new grease flows from the inboard seal. See Fig. 6.

WARNING

If grease leaks out under the camhead, the camshaft bracket grease seal is worn or damaged and should be replaced. If this seal is not replaced, the brake linings could become contaminated with grease. The stopping distance of the vehicle will be increased, which could result in personal injury or property damage.

42–06 Slack Adjuster Lubrication

IMPORTANT: Perform MOP 42–07 before lubricating the slack adjusters.

Slack adjusters that have a grease fitting must be lubricated periodically to ensure proper brake operation.
WARNING

Failure to lubricate slack adjusters could lead to dragging brakes or a brake failure, resulting in property damage, personal injury, or death.

Dana Spicer and Haldex

CAUTION

Do not use moly-disulfide-loaded grease or oil. Both the life and reliability of the slack adjuster will be reduced if this type of grease is used.

Lubricate the slack adjuster at the grease fitting. See Fig. 7. Use standard chassis lubricant for Haldex slack adjusters. Dana Spicer Low Lube slack adjusters should be lubricated with SHC 460 synthetic lubricant.

Gunite

For operating temperatures of –20°F (–29°C) and higher, use Texaco Multifak EP-2 or Mobil Grease No. 77.

For operating temperatures between –20°F (–29°C) and –40°F (–40°C), use Lubriplate Aero grease.

Lubricate a Gunite slack adjuster at the grease fitting until grease appears on the camshaft, or flows from the grease relief. See Fig. 8.

Meritor

NOTE: If equipped with an extended-maintenance Q Plus brake system, the slack adjuster will not have a grease fitting. These

Fig. 7, Dana Spicer Slack Adjuster

Fig. 8, Gunite Slack Adjuster

The newest Gunite slack adjusters are produced without a grease relief. During lubrication with a grease gun, the lubricant is forced through the drilled worm wheel onto the camshaft. Lubricate the slack adjuster at the grease fitting until grease appears on the camshaft. See Fig. 8.
slack adjusters use a special NLGI Grade synthetic polyurea grease, and do not require lubrication for 3 years or 500,000 miles (800,000 km), whichever comes first. The extended-maintenance slack adjusters are lubricated during the brake reline service interval.

For slack adjusters with grease fittings and for operating temperatures above –40°F (–40°C), use a NLGI Grade 1 clay-base grease or a NLGI Grade 1 and 2 lithium-base grease.

For slack adjusters with grease fittings and for operating temperatures below –40°F (–40°C) and above –65°F (–54°C), use a NLGI Grade 2 synthetic oil, clay-base grease.

Lubricate the slack adjuster at the grease fitting until grease is forced past the pressure-relief capscrew or past the gear splines around the inboard snap ring. See Fig. 9.

42–07 Brake Inspection

IMPORTANT: This procedure should be performed prior to lubrication of the brake components.

Parking Brake Operational Check

CAUTION

Perform the following check in a clear safe area. If the parking brakes fail to hold the vehicle, personal injury or property damage may result.

1. With the engine running, and air pressure at cut-out pressure, set the parking brake.
2. Put the vehicle in the lowest gear and gently attempt to move it forward. The vehicle should not move. If the vehicle moves, the parking brakes are not operating correctly and must be repaired before the vehicle is returned to service. See Group 42 of the Western Star Workshop Manual for repair procedures.

Brake Component Inspection

Air Disc Brakes

IMPORTANT: The following step to inspect the caliper mounting bolts should only be performed at the initial maintenance (IM) interval.

Vehicles may have both axial and radial mounted calipers. Follow the instructions based on the type of calipers installed on the vehicle.

Axial Mounted Brakes

IMPORTANT: The following information applies to all types of axial mounted brake applications.

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.
2. Raise the vehicle and support it on jack stands.
3. Remove all of the wheel assemblies. For instructions, see Group 42 of the Western Star Workshop Manual.

NOTE: In all steps that require a torque wrench, use a Snap On torque wrench ATECH4RS600,
or an equivalent, with a center to handle length of 47 inches (119 cm).

4. Set a torque wrench to 350 lbf·ft (475 N·m) and tighten the caliper mounting bolts following the tightening pattern shown in Fig. 10. If they do not turn, no further work is needed. If they turn, take the vehicle to an authorized Freightliner dealer to have all of the caliper bolts on that wheel end replaced. Due to limited caliper bolt access, it may be necessary to use tool DDC DSNCHA018005 referenced in tool letter 18TL18. See Fig. 11. If the tool is needed, see Table 1 for torque specifications for a 47 in (119 cm) long wrench.

5. Install the wheel assemblies. For instructions, see Group 40 of the Western Star Workshop Manual.

6. Remove the jack stands and lower the vehicle.

<table>
<thead>
<tr>
<th>Angle View</th>
<th>Extension Angle (degrees)</th>
<th>Target Torque [lbf·ft (N·m)]</th>
<th>Tool Setting [lbf·ft (N-m)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0</td>
<td></td>
<td>296 (401)</td>
</tr>
<tr>
<td>45°</td>
<td>45</td>
<td>310 (420)</td>
<td></td>
</tr>
<tr>
<td>60°</td>
<td>60</td>
<td>320 (434)</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>90</td>
<td>350 (475)</td>
<td></td>
</tr>
<tr>
<td>120°</td>
<td>120</td>
<td>386 (523)</td>
<td></td>
</tr>
<tr>
<td>135°</td>
<td>135</td>
<td>402 (545)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1, Torque Check with 47 Inch (119 cm) Torque Wrench and Tool DDC DSNCHA018005
Radial Mounted Brakes

Bendix Calipers

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.
2. Raise the vehicle and support it on jack stands.
3. Remove all of the wheel assemblies. For instructions, see Group 40 of the Western Star Workshop Manual.
4. Set a torque wrench to 200 lbf·ft (271 N·m) and tighten the caliper mounting bolts following the tightening pattern shown in Fig. 12. If they do not turn, no further work is needed. If they turn, take the vehicle to an authorized Freightliner dealer to have all of the caliper bolts on that wheel end replaced.
5. Install the wheel assemblies. For instructions, see Group 40 of the Western Star Workshop Manual.
6. Remove the jack stands and lower the vehicle.

Meritor Calipers

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.
2. Raise the vehicle and support it on jack stands.
3. Remove all of the wheel assemblies. For instructions, see Group 40 of the Western Star Workshop Manual.
4. Set a torque wrench to 350 lbf·ft (475 N·m) and tighten the caliper mounting bolts following the tightening pattern shown in Fig. 13. If they do not turn, no further work is needed. If they turn, take the vehicle to an authorized Freightliner dealer to have all of the caliper bolts on that wheel end replaced.
5. Install the wheel assemblies. For instructions, see Group 40 of the Western Star Workshop Manual.
6. Remove the jack stands and lower the vehicle.

WABCO Maxxus Calipers

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires.
2. Raise the vehicle and support it on jack stands.
3. Remove all of the wheel assemblies. For instructions, see Group 40 of the Western Star Workshop Manual.
4. Set a torque wrench to 273 lbf·ft (370 N·m) and tighten the caliper mounting bolts following the tightening pattern shown in Fig. 14. If they do not turn, no further work is needed. If they turn, take the vehicle to an authorized Freightliner dealer to have all of the caliper bolts on that wheel end replaced.
5. Install the wheel assemblies. For instructions, see Group 40 of the Western Star Workshop Manual.
6. Remove the jack stands and lower the vehicle.

Drum Brakes

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires. Once the tires are chocked, release the parking brake.

WARNING

Manually adjusting an automatic slack adjuster to bring the pushrod stroke within legal limits is likely masking a mechanical problem. Adjustment
is not repairing. Before adjusting an automatic slack adjuster, troubleshoot the foundation brake system and inspect it for worn or damaged components. Improperly maintaining the vehicle braking system may lead to brake failure, resulting in property damage, personal injury, or death.

2. With the engine off, and 100 psi (690 kPa) of air tank pressure, have an assistant apply and hold an 80 to 90 psi (552 to 621 kPa) brake application.

3. Check to see if the colored over-stroke band on each brake chamber pushrod is exposed. If a band shows, the stroke is too long. Check the foundation brake components for wear or damage, and repair as needed. See Group 42 of the Western Star Workshop Manual for inspection, troubleshooting, and repair procedures.

4. Measure the applied chamber stroke. See Table 2 for the proper stroke for the type of chamber being used. If the stroke is too short, the brakes may drag or will not fully apply. Check for improper operation or adjustment of the automatic slack adjuster. See Group 42 of the Western Star Workshop Manual for inspection, troubleshooting, and repair procedures.

5. Check all of the foundation brake components for damage, wear, and loose or missing parts. Repair as needed. See Group 42 of the Western Star Workshop Manual for inspection, troubleshooting, and repair procedures.
Tighten the fasteners in the order indicated.
A. Left Hand, Bottom View B. Right Hand, Bottom View

Fig. 13, Meritor Radial Mounted Caliper Tightening Pattern
Tighten the fasteners in the order indicated.

A. Left Hand, Bottom View
B. Right Hand, Bottom View

Fig. 14, Wabco Maxxus Radial Mounted Caliper Tightening Pattern
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type*</th>
<th>Size†</th>
<th>Max Applied Stroke: inch (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gunite</td>
<td>Standard Stroke</td>
<td>9</td>
<td>1-3/8 (35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1-3/4 (45)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>2 (51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36‡</td>
<td>2-1/4 (57)</td>
</tr>
<tr>
<td></td>
<td>Long Stroke</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>2 (51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>2-1/2 (64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Haldex</td>
<td>Standard Stroke</td>
<td>12</td>
<td>1-3/8 (35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1-3/4 (44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-1/2-Inch Extended Stroke</td>
<td>24</td>
<td>2 (51)</td>
</tr>
<tr>
<td></td>
<td>3-Inch Extended Stroke</td>
<td>24</td>
<td>2-1/2 (64)</td>
</tr>
<tr>
<td></td>
<td>Standard Stroke</td>
<td>30</td>
<td>2 (51)</td>
</tr>
<tr>
<td></td>
<td>Long Stroke</td>
<td>30</td>
<td>2-1/2 (64)</td>
</tr>
<tr>
<td>Meritor</td>
<td>Standard Stroke</td>
<td>9</td>
<td>Less than 1-1/2 (38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Less than 1-3/4 (44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>Less than 1-7/8 (48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long Stroke</td>
<td>24</td>
<td>Less than 2 (51)</td>
</tr>
<tr>
<td></td>
<td>Standard Stroke</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

* Long stroke design is indicated by a tag, or embossing, on the brake chamber.
† Specifications are relative to a brake application with 80 to 90 psi (550 to 620 kPa) air pressure in the brake chambers.
‡ If type 36 chamber is used, slack length should be less than 6 inches.

Table 2, Brake Chamber Stroke Specifications
42–08 Versajust Slack Adjuster Inspection and Lubrication

IMPORTANT: Perform the Brake Inspection maintenance operation before lubricating the slack adjusters.

1. Visually check for physical damage, such as broken air lines and broken or missing parts.

2. Using a quality multipurpose chassis lubricant, NLGI Grade 2, lubricate the slack adjuster through the grease fitting until clean lubricant flows from the grease relief opening in the boot.

3. Perform the “In Service Inspection.”

In Service Inspection

1. Apply and release the brakes several times while observing the slack adjuster. The slack adjuster and brake actuator should move freely, without binding or interference, and should return to the full released position. Observe the looseness that exists between the clevis and adapter bushing and the yoke and link pins and their mating parts (clevis, body, link). Replace these parts if looseness appears excessive. Make certain the brake actuator pushrod jam nut is tightened securely.

2. Inspect the slack adjuster for physical damage, paying attention to the link, boot, and clevis. If any components are damaged, repair or replace them as necessary.

3. Measure the brake actuator pushrod stroke while making an 80 to 90 psi (552 to 621 kPa) brake application. Actuator pushrod strokes should not exceed the values shown in Table 3 and Table 4. To achieve the correct pressure for this test, build the system pressure up to a 100 psi (690 kPa). Shut down the engine. Fan the brakes to attain a 90 to 95 psi (621 to 655 kPa) reading. Make and hold a full brake application while the strokes are checked.

<table>
<thead>
<tr>
<th>Actuator Stroke–Standard Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Actuator Size</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

Table 3, Actuator Stroke–Standard Stroke

<table>
<thead>
<tr>
<th>Actuator Stroke–Long Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Actuator Size</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>30 Long Stroke</td>
</tr>
<tr>
<td>24 Long</td>
</tr>
<tr>
<td>24 Long Stroke</td>
</tr>
<tr>
<td>20 Long</td>
</tr>
<tr>
<td>16 Long</td>
</tr>
</tbody>
</table>

Table 4, Actuator Stroke–Long Stroke

42–09 Bendix Automatic Drain Valve Operating and Leakage Tests

Operating Test

With the system charged, apply the brakes several times. Each time the brakes are applied, an exhaust of air should occur from the exhaust port of the drain valve. If no air comes out, push the wire stem located inside the exhaust port. If no air comes out after pushing the wire stem, there may be a plugged filter in the adapter which should be replaced.

If the drain valve does not function properly, repair or replace it. See Section 42.12 of the Western Star Workshop Manual.

Leakage Test

With the system charged and pressure stabilized in the system, there should be no leaks at the drain valve exhaust port. A constant slight exhaust of air at the drain valve exhaust port could be caused by excessive leakage in the air brake system.
If the drain valve is leaking excessively, repair or replace it. See Section 42.12 of the Western Star Workshop Manual.
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag Link Inspection</td>
<td>46–01</td>
</tr>
<tr>
<td>Drag Link Lubrication</td>
<td>46–02</td>
</tr>
<tr>
<td>Power Steering Fluid and Filter Changing</td>
<td>46–03</td>
</tr>
<tr>
<td>Power Steering Gear Lubrication</td>
<td>46–05</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>46–00</td>
</tr>
<tr>
<td>Steering Shaft Lubrication</td>
<td>46–04</td>
</tr>
</tbody>
</table>
46–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

\[\textbf{DANGER} \]

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

46–01 Drag Link Inspection

\[\textbf{WARNING} \]

All steering system components are critical for safe operation of the vehicle. Failure to maintain the steering system as specified may result in loss of steering control, which could lead to personal injury and property damage.

Have someone turn the steering wheel from left to right. Check for movement between the ball stud end at both the pitman arm and the steering arm. Also check if the ball stud nut is loose.

If the ball stud end is loose, replace the drag link. If the ball stud nut is loose, replace the nut and cotter key. See Group 00 for proper torque specifications.

Inspect the boot of the drag link at both the pitman arm and the steering arm end for cracks, splits, or other damage. Replace the boot as needed.

Grasp the drag link near the pitman arm end, then push and pull laterally to check for axial movement in the ball stud end. If it is loose, replace the drag link. If there is 1/8-inch (3-mm) movement or more, do not drive the vehicle until the drag link has been replaced.

46–02 Drag Link Lubrication

1. Using a clean rag, wipe all dirt from both drag link grease fittings. See Fig. 1.

2. Using a pressure gun, apply clean grease at the grease fittings until old grease is forced out of the socket. Use multipurpose chassis grease NLGI Grade 2 (8% 12-hydroxy lithium stearate grease) or NLGI Grade 1 (6% 12-hydroxy lithium stearate grease); Grade 2 is preferred.

46–03 Power Steering Fluid and Filter Changing

\[\textbf{WARNING} \]

Fill only with approved clean fluid. Failure to use the proper fluid could cause seal deterioration and leaks. Fluid leaks could eventually cause loss of power steering assist. This could lead to an accident resulting in personal injury or property damage. Wear eye protection when changing the fluid and filter.

Cylindrical Reservoir, Bottom Return Port (Fig. 2)

1. Set the parking brake and chock the rear tires.
2. Raise the front of the vehicle and support it with jack stands.
3. Put the vehicle in neutral.
4. Open the hood.
5. Wipe down the area around the steering gear and related hydraulic lines.
6. Place a drain pan under the steering gear and power steering reservoir.
7. Remove the pressure line and return hose (see Fig. 3) from the steering gear and allow the oil to drain.
8. Loosen the clamp, and remove the cover along with the filter spring and the filter top plate. Do not use pliers to aid in removal of the filter; pliers could cause metal chips to enter the steering system.

9. Remove the filter. It may be necessary to wiggle the filter to remove it from its base.

10. Turn the steering wheel from full left to full right three times to purge oil from the gear.

11. Connect the pressure line and return hose to the steering gear.

12. Install a new filter into the reservoir. Position the new filter with the larger opening up.

13. Clean the reservoir cover and gasket. Inspect the O-ring and the cover for cracks, deformities, or damage. Replace the gasket seal or cover as needed.

14. Install the reservoir cover along with the spring and the top plate. Make sure the center of the top plate fits into the opening at the top of the filter.

15. Place the clamp over the flanges of the cover and shell assembly, then tighten 25 to 30 lbf·ft (35 to 40 N·m).

16. Fill the reservoir with an approved power steering fluid. See Table 1 for approved power steering fluids.

<table>
<thead>
<tr>
<th>Fluid Type</th>
<th>Approved Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Transmission Fluid</td>
<td>Dexron® III</td>
</tr>
<tr>
<td></td>
<td>Super ATF</td>
</tr>
<tr>
<td></td>
<td>TES-389</td>
</tr>
</tbody>
</table>

17. With the engine off, turn the steering wheel from full left to full right three times. Add more power steering fluid as needed.

18. Start the engine and operate the engine at idle. Check the power steering fluid and add more fluid if needed.

19. Turn the steering wheel from full left to full right several times. Add fluid to the reservoir as needed to maintain the fluid level.

20. Shut down the engine.

21. Raise the vehicle, remove the jack stands, and lower the vehicle.

Flat Reservoir, Top Return Port

1. Set the parking brake and chock the rear tires.
2. Raise the front of the vehicle and support it with jack stands.
3. Put the vehicle in neutral.
4. Open the hood.
5. Wipe down the area around the steering gear and related hydraulic lines.
6. Place a drain pan under the steering gear and power steering reservoir.
7. Remove the pressure line and return hose (see Fig. 4) from the steering gear and allow the oil to drain.
8. Remove the filter cap from the reservoir, then remove and discard the filter.
 - Filter caps with a separate retaining ring have a threaded connection with the filter. Unscrew the filter and discard it.
 - One-piece filter caps do not have a threaded fit with the filter. Pull off the filter and discard it.
9. Turn the steering wheel from full left to full right three times to purge oil from the gear.
10. Connect the pressure line and return hose to the steering gear.
11. Fill the reservoir with an approved power steering fluid to the line between the MIN COLD and MAX HOT lines. See Fig. 4. See Table 1 for approved power steering fluids.
12. Apply a thin film of power steering fluid on the gasket of the new filter, then attach the filter to the filter cap and install the cap on the reservoir.
 - For filter caps with a separate retaining ring, hand-tighten the filter, then turn it an additional 1/4 turn.
 - For one-piece filter caps, the filter is not threaded.
13. With the engine off, turn the steering wheel from full left to full right three times. Add more power steering fluid as needed.
14. Start the engine and operate the engine at idle. Check that the power steering fluid level is between the MIN COLD and MAX HOT lines. Add more power steering fluid if needed.
15. Turn the steering wheel from full left to full right several times. Add fluid to the reservoir as needed to maintain the fluid level between the MIN COLD and MAX HOT lines.
16. Shut down the engine.
17. Raise the vehicle, remove the jack stands, and lower the vehicle.

46–04 Steering Shaft Lubrication

IMPORTANT: Only steering shafts with zerk fittings should be lubricated. Shafts without zerk fittings come with grease sealed inside and should not be greased.

IMPORTANT: Some vehicles may have additional U-joints on the steering column or stub-shaft. These should also be lubricated at this interval.

1. Open the hood and locate the lower steering shaft U-joint grease fitting.
2. Using a clean rag, wipe all dirt from the grease fitting.
3. Using a pressure gun, apply clean grease at the grease fitting until old grease is forced out of the seals. Use multipurpose chassis grease NLGI Grade 2 (8% 12-hydroxy lithium stearate grease)
or NLGI Grade 1 (6% 12-hydroxy lithium stearate grease); Grade 2 is preferred. See Fig. 5.

4. Locate the upper steering shaft slip joint and U-joint grease fittings.

5. Using a clean rag, wipe all dirt from the grease fittings.

6. Using a pressure gun, apply clean grease at both grease fittings until old grease is forced out of the seals. Use multipurpose chassis grease NLGI Grade 2 (8% 12-hydroxy lithium stearate grease) or NLGI Grade 1 (6% 12-hydroxy lithium stearate grease); Grade 2 is preferred. See Fig. 6.

CAUTION

Apply grease to the sector shaft only with a hand-type grease gun. See Fig. 7. Use of a high-pressure power grease gun will supply grease too quickly and could affect the high pressure seal, contaminating the hydraulic fluid.

Fig. 6, Steering Shaft, Inside the Cab

Using a hand-type grease gun, apply NLGI Grade 2 or 3 multipurpose chassis grease until it starts to come out past the sector shaft seal.

Fig. 7, TRW TAS Series Sector Shaft Lubrication
Title of Maintenance Operation (MOP)

<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Filter Replacement</td>
<td>47–01</td>
</tr>
<tr>
<td>Fuel Separator Sight Bowl Cleaning and Element Replacement</td>
<td>47–02</td>
</tr>
<tr>
<td>Fuel Tank Band Nut Tightening</td>
<td>47–03</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>47–00</td>
</tr>
</tbody>
</table>

Index, Alphabetical
47–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

47–01 Fuel Filter Replacement

Refer to the engine manufacturer's service manual for removal and installation procedures.

47–02 Fuel Separator Sight Bowl Cleaning and Element Replacement

Alliance/Racor

The only maintenance necessary on an Alliance or Racor fuel/water separator is to replace the filter element.

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires and open the hood.
2. Place a suitable container under the fuel/water separator.
3. Turn the drain plug counterclockwise to open it.
4. When the fuel/water separator is completely drained, turn the drain plug clockwise to close it.

WARNING

Diesel fuel is flammable and can ignite if exposed to an open flame, intense heat, or other ignition source. Do not drain fuel near, or expose fuel vapor to open flame or intense heat. Exposure to open flame or intense heat could start a fire, possibly resulting in personal injury or property damage. When working on a fuel system, have a fire extinguisher within easy reach.

5. Disconnect the wiring harnesses from the water-in-fuel sensor and, if equipped, the heater. See Fig. 1.
6. Spin off the sight bowl and the filter element as a unit. Remove the O-ring from the top of the filter element.
7. Remove the sight bowl from the filter element. Clean the O-ring seating surface.
8. Apply a thin coating of clean diesel fuel or engine oil to the O-rings.
9. Spin the sight bowl onto the new filter element and then fill the filter element and sight bowl assembly with clean diesel fuel.
10. Spin the entire assembly onto the mounting head and tighten by hand until snug.
11. Connect the wiring harnesses for the water-in-fuel sensor and, if equipped, the heater.
12. Prime the fuel/water separator, as follows.
 - If equipped with a primer pump, operate the primer pump until fuel comes out at the drain.
 - If not equipped with a primer pump, fill the filter element and sight bowl with clean fuel and crank the engine until it starts.
13. Start the engine and check for leaks.
14. Shut down the engine and repair any leaks.

DAVCO Fuel Pro® 382 and 482, and Diesel Pro® 243

NOTE: In the event of an emergency, when the filter needs replacement but a DAVCO filter is not available, a temporary filter can be used; see Chapter 21 of the Western Star Driver’s Manual for instructions.
WARNING

Fluid circulated through the fuel/water separator to heat the fuel may be diesel fuel returned from the engine, or engine coolant. Drain the fuel/water separator only when the engine and fluids have cooled. Draining it when the engine is hot could cause severe personal injury due to scalding.

If returning fuel is released into the atmosphere, its vapors can ignite in the presence of any ignition source. Do not expose the fuel to, or work with the fuel system near, open flame or intense heat. To do so could cause fire, possibly resulting in serious personal injury or property damage.

The filter element should be changed only when the fuel level has reached the top of the filter element. There is no significant restriction to fuel flow until the element is completely clogged.

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires and open the hood.

2. Check the fuel level in the fuel filter. Replace the fuel/water separator element only when the filter element is completely covered. If the fuel level has reached the top of the filter element, follow the procedure below to replace the element.

3. Put a clean receptacle under the fuel/water separator and attach a piece of hose to the drain valve, to direct fuel into the receptacle. The drain valve has a 1/2-inch (12.7-mm) pipe; use a hose with a 1/2-inch pipe thread to fit correctly.

4. Remove the vent cap (Fig. 2, Item 4) and open the drain valve (Fig. 2, Item 1) to drain the fuel completely, then close the drain valve.

5. Using a DAVCO Collar Wrench (Fig. 3), remove the clear cover and collar.

NOTE: Broken vent cap and collar warranty claims will not be accepted if any tool other than a DAVCO Collar Wrench is used for removal. During installation, the vent cap is to be hand-tightened only, not tightened with a wrench. Use part number 482017 on Fuel Pro 482 units; part number 380134 on Fuel Pro 382 units.
6. Remove the filter, cover O-ring, and vent cap O-ring. Dispose of them in an environmentally acceptable manner. See Fig. 4, Fig. 5, or Fig. 6.

7. Clean all threads and sealing surfaces very thoroughly. Even a small amount of dirt will prevent the fuel/water separator from sealing, and an air leak may result.

8. On Fuel Pro 382 units, install the grommet on the bottom of the new filter.

9. Install the new filter and grommet assembly and cover O-ring on the housing.

10. Install the clear cover and the collar. Simultaneously apply downward pressure to the top of the clear cover until it is seated on the body of the lower housing and hand tighten the collar until it no longer spins freely. Using the collar wrench, tighten the cover 18 lbf-ft (24 N-m). This is equivalent to rotating the collar clockwise two or three additional ribs, depending on the specific filter model.

11. Prime the system.
 11.1 Ensure that the drain valve is closed.
 11.2 Fill the housing to the top of the filter element with clean diesel fuel.
 11.3 Install and hand-tighten the vent cap O-ring and vent cap.
 11.4 Start the engine. When the lubricating oil reaches its normal operating pressure, increase engine speed to high idle for one to two minutes to purge air from the system.
 11.5 While the engine is running, and after the air is purged from the system, loosen the vent cap until the fuel level falls to about one inch (2.5 cm) above the collar, then hand-tighten the vent cap.
 11.6 Check for leaks and shut down the engine.

WARNING

Fluid circulated through the fuel/water separator to heat the fuel may be diesel fuel returned from the engine, or engine coolant. Drain the fuel/water separator only when the engine and fluids have cooled. Draining it when the engine is hot could cause severe personal injury due to scalding.

If returning fuel is released into the atmosphere, its vapors can ignite in the presence of any ignition source. Do not expose the fuel to, or work with the fuel system near, open flame or intense heat. To do so could cause fire, possibly resulting in serious personal injury or property damage.

1. Shut down the engine, apply the parking brake, and chock the tires.
Fig. 4, DAVCO Fuel Pro 382

1. Drain Valve
2. Bottom Plate Assembly
3. Bottom Plate O-Ring
4. Lower Housing
5. Cover O-Ring
6. Filter Element
7. Spring
8. Clear Cover
9. Vent Cap O-Ring
10. Vent Cap
11. Collar
12. Grommet
13. Inlet Port/Check Valve
14. Heat Exchanger

Fig. 5, DAVCO Fuel Pro 482

1. Inlet Port/Check Valve
2. Lower Housing
3. Bypass Valve
4. Filter Element
5. Spring
6. Clear Cover O-Ring
7. Clear Cover
8. Vent Cap O-Ring
9. Vent Cap
10. Lower Housing Collar
11. 120VAC Pre-Heater
12. 12VDC Pre-Heater
13. Drain Valve
2. Check the fuel level in the fuel filter. Replace the fuel/water separator element only when the filter element is completely covered. If the fuel level has reached the top of the filter element, follow the procedure below to replace the element.

3. Put a clean receptacle under the fuel/water separator and attach a piece of hose to the drain valve, to direct fuel into the receptacle.

 On older models, the drain valve has a 1/2-inch (12.7-mm) pipe with threads. Use a hose with a 1/2-inch pipe thread to fit correctly and open the drain valve by turning it one-quarter revolution.

 On new models, the drain valve has a 3/4-inch (19-mm) slip-on hose connection; pipe threads are no longer used. Open the drain valve by turning it one to one-and-a-half revolutions.

4. Remove the vent cap, shown in Fig. 7, to drain the fuel completely, then close the drain valve.

5. Using a DAVCO Collar Wrench, shown in Fig. 3, remove the clear cover and collar.

 NOTE: Broken vent cap and collar warranty claims will not be accepted if any tool other than a DAVCO Collar Wrench (part number 482017) is used for removal. During installation, the vent cap is to be hand-tightened only, not tightened with a wrench.

6. Remove the filter, cover O-ring, and vent cap O-ring. Dispose of them in an environmentally acceptable manner. See Fig. 7.

7. Clean all threads and sealing surfaces very thoroughly. Even a small amount of dirt will prevent the fuel/water separator from sealing, and an air leak may result.

8. Install the new filter and grommet assembly and cover O-ring on the housing.

 Position the filter element so the key is lined up with the keyway on the separator plate of the housing. Use the arrow on the top of the endplate to align the filter. See Fig. 8. Ensure the filter element is fully seated by firmly pushing on the endplate. The filter should not rotate freely.

9. Install the clear cover and the collar. Simultaneously apply downward pressure to the top of the clear cover until it is seated on the body of the lower housing and hand tighten the collar until it no longer spins freely. Using the collar wrench, tighten the cover 18 lbf·ft (24 N·m). This is
equivalent to rotating the collar clockwise two or three additional ribs, depending on the specific filter model.

10. Prime the system

10.1 Ensure that the drain valve is closed.

10.2 Fill the housing to the top of the filter element with clean diesel fuel.

10.3 Install and hand-tighten the vent cap O-ring and vent cap.

10.4 Start the engine. When the lubricating oil reaches its normal operating pressure, increase engine speed to high idle for one to two minutes to purge air from the system.

10.5 While the engine is running, and after the air is purged from the system, loosen the vent cap until the fuel level falls to just above the collar, then hand-tighten the vent cap.

10.6 Check for leaks and shut down the engine.
ConMet Fuel Separator Sight Bowl Cleaning

The only maintenance necessary on ConMet fuel separators is to clean the sight bowl, if equipped. See Fig. 9.

WARNING

Diesel fuel is flammable and can ignite if exposed to an open flame, intense heat, or other ignition source. Do not drain fuel near, or expose fuel vapor to open flame or intense heat. Exposure to open flame or intense heat could start a fire, possibly resulting in personal injury or property damage. When working on a fuel system, have a fire extinguisher within easy reach.

1. Park the vehicle on a level surface, shut down the engine, and set the parking brake. Chock the tires and open the hood.

IMPORTANT: When draining fluid from a fuel/water separator, drain the fluid into an appropriate container, and dispose of it properly. Many jurisdictions now issue fines for draining fuel/water separators onto the ground.

2. Drain the fuel separator.

3. Unscrew the sight bowl from the fuel separator.

4. Wipe the sight bowl clean using a soft cloth.

5. Lubricate the gasket with a film of oil, and reinstall it on the sight bowl. If the gasket appears dry-rotted or damaged, replace the gasket.

6. Lightly lubricate the threads on the sight bowl with oil, then thread the sight bowl into the bottom of the fuel separator.

7. Hand-tighten until the gasket is in full contact with the fuel separator, then tighten an additional 1/4 to 1/3 turn.

8. Check that the drain valve is tightened and closed.

9. To prime the fuel separator, remove the vacuum breaker fitting and fill the unit with diesel fuel, then install and close the fitting when the unit is full.

IMPORTANT: The fitting must be air-tight and the valve closed.

Fig. 9, ConMet Fuel Separator

1. Vacuum Breaker/Drain Valve
2. Reducer Bushing
3. Mounting Brackets
4. O-ring (when equipped with heater)
5. Stainless Steel V-Clamp (when equipped with heater)
6. Heater Assembly
7. Gasket
8. Sight Bowl Heater Rod
9. Sight Bowl Assembly
10. Vacuum Breaker/Drain Valve
Detroit

The only maintenance necessary on a Detroit fuel/water separator is to replace the filter element. See Fig. 10.

![Fig. 10, Detroit Fuel/Water Separator]

WARNING

Fluid circulated through the fuel/water separator to heat the fuel may be diesel fuel returned from the engine, or engine coolant. Drain the fuel/water separator only when the engine and fluids have cooled. Draining it when the engine is hot could cause severe personal injury due to scalding.

If returning fuel is released into the atmosphere, its vapors can ignite in the presence of any ignition source. Do not expose the fuel to, or work with the fuel system near, open flame or intense heat. To do so could cause fire, possibly resulting in serious personal injury or property damage.

1. Drain off some fuel by loosening the vent plug and opening the drain valve.
2. Disconnect the water sensor and heater connections if equipped.
3. Remove the bowl by turning counterclockwise.
4. Remove the element, bowl O-ring, and element o-ring. Dispose of them in an environmentally acceptable manner.
5. Thoroughly clean all of the threads and sealing surfaces. Even a small amount of dirt will prevent the fuel/water separator from sealing, and an air leak may result.
6. Apply a coating of clean fuel or motor oil to the new O-ring and to the new element o-ring.
7. Insert the new element into the upper housing.

IMPORTANT: Do not use tools to tighten the bowl and element.
8. Spin the bowl onto the upper housing by hand only.
9. Connect the water sensor and heater connectors if equipped.
10. If equipped with a primer pump, prime the fuel/water separator as follows.
 10.1 Loosen the vent plug. Then operate the primer pump until the fuel purges at the vent plug.
 10.2 Close the vent plug.
11. Start the engine and check for fuel leaks.
12. Shut down the engine and correct any fuel leaks.

47–03 Fuel Tank Band Nut Tightening

IMPORTANT: Do not overtighten the nuts.

Rectangular Fuel Tank

Hold the retention nut on the fuel tank band with a wrench while backing off the jam nut. Then tighten the retention nut 13 to 17 lbf-ft (18 to 23 N-m). After the retention nut has been tightened, hold the retention nut with a wrench while tightening the jam nut 13 to 17 lbf-ft (18 to 23 N-m).

Cylindrical Fuel Tank

Hold the retention nut on the fuel tank band with a wrench while backing off the jam nut. Then tighten the retention nut 30 to 35 lbf-ft (41 to 46 N-m). After
the retention nut has been tightened, hold the retention nut with a wrench while tightening the jam nut 30 to 35 lbf-ft (41 to 46 N·m).
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT CGI Bellows Replacement.</td>
<td>49–02</td>
</tr>
<tr>
<td>Exhaust System Inspection (Noise Emission Control).</td>
<td>49–01</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>49–00</td>
</tr>
</tbody>
</table>
49–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

⚠️ DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

49–01 Exhaust System Inspection (Noise Emission Control)

In addition to inspecting the exhaust system at the scheduled maintenance interval, inspect the exhaust system if the noise level of the vehicle has increased. Western Star Trucks recommends replacing parts that show leakage, wear, or damage, with genuine Western Star parts.

The exhaust system must be free of leaks, binding, grounding, and excessive vibrations. These conditions are usually caused by loose, broken, or misaligned clamps, brackets, or pipes. If any of these conditions exist, check the exhaust system components and alignment. Align or replace as necessary; see Group 49 of the Western Star Workshop Manual, or take the vehicle to an authorized Freightliner dealer.

It is a violation of US federal law to alter exhaust plumbing or aftertreatment in any way that would bring the engine out of compliance with certification requirements. (Ref: 42 U.S.C. S7522(a) (3).) It is the owner’s responsibility to maintain the vehicle so that it conforms to EPA regulations.

EPA10 and Newer Exhaust System

Definitions of Aftertreatment (ATS) Terms

Refer to the following list of definitions of ATS terms and components.

- Aftertreatment System (ATS)—the entire exhaust system from the turbocharger to the exhaust stack or tail pipe.
- Aftertreatment Device (ATD)—a housing that contains the DOC and DPF (also the SCR and the mixing tube in one-box systems).
- BlueTec®—Daimler’s proprietary SCR technology.
- Diesel Oxidation Catalyst (DOC)—a flow-through device that oxidizes soot in the ATD.
- Diesel Particulate Filter (DPF)—a component in the ATD that traps soot from the exhaust gas.
- Diesel Exhaust Fluid (DEF)—the chemical agent that reacts with the exhaust gases in the SCR to reduce NOx.
- DEF Pump—filters and supplies DEF to the DEF metering unit.
- DEF Tank—holds DEF and regulates its temperature.
- DEF Metering Unit—mixes DEF with compressed air, and meters this mixture into the exhaust flow via an injection nozzle.
- SCR Catalyst—the housing containing a treated ceramic flow-through block where the DEF and exhaust gases undergo selective catalytic reduction (SCR).
- Selective Catalytic Reduction (SCR)—a process used to reduce NOx emissions.

Inspection

IMPORTANT: Depending upon local jurisdictional emissions guidelines, vehicles that are domiciled outside of the U.S. and Canada may not have engines and/or emissions aftertreatment systems that are compliant with EPA10 or GHG21 regulations.
IMPORTANT: The aftertreatment device (ATD), which is part of the aftertreatment system (ATS), requires special attention during regularly scheduled maintenance inspections. No leaks are allowed anywhere in the system. If any discrepancies are discovered, refer to the engine manufacturer's service literature for repair instructions.

8. Check the SCR catalyst for dents and other damage.
9. Check for heat discoloration on the surface of the ATD. Heat discoloration may indicate internal damage; especially around the DPF.

NOTE: Diesel exhaust fluid creeps, causing white crystals to form around the line fittings. The presence of crystals does not mean the system has a leak. Replacing fittings or troubleshooting components is not necessary unless there is a system failure or a fault code.

10. Check the DEF tank, pump, metering unit, and lines for leaks. See Section 49.02 of the Western Star Workshop Manual for repair procedures.

11. Check any wires, lines, or hoses within 4 inches (10 cm) of the exhaust system for heat damage. Repair or reroute as needed.

Diesel Exhaust Fluid (DEF) Filter Replacement

The Environmental Protection Agency's 2010 regulations require lower nitrogen oxide (NOx) exhaust emissions. Selective catalytic reduction (SCR) uses diesel exhaust fluid (DEF) to lower NOx emissions in the vehicle exhaust. A filter in the DEF pump prevents clogging of the DEF metering unit injection nozzle.

See the engine manufacturer's maintenance manual for filter replacement instructions and maintenance intervals.

EPA07 Exhaust System Definitions of ATS Components

Refer to the following list of definitions of ATS components.

• Aftertreatment System (ATS)—the entire exhaust system from the turbocharger to the exhaust stack or tail pipe.

• Aftertreatment Device (ATD)—a muffler-like canister that houses a DPF, DOC, and sensors.

• Diesel Particulate Filter (DPF)—a filter that collects and holds particulate matter (soot and ash).

• Diesel Oxidation Catalyst (DOC)—oxidizes hydrocarbons and reduces NOx.
Sensors—detect temperatures and pressures in the ATS.

Inspection
To meet EPA07 emissions regulations for vehicles domiciled in the USA or Canada, engines manufactured after December 31, 2006 are equipped with an emission aftertreatment system. Vehicles domiciled outside of the USA and Canada may not have aftertreatment equipment, depending upon local statutory emissions guidelines.

IMPORTANT: The aftertreatment device (ATD), which is part of the aftertreatment system (ATS), requires special attention during regularly scheduled maintenance inspections; see Fig. 4. No leaks are allowed anywhere in the system. If any discrepancies are discovered, refer to the engine manufacturer’s service literature for repair instructions.

1. Check for leakage at the clamp that attaches the exhaust pipe to the turbocharger exhaust outlet. If leakage exists, tighten the nut on the clamp to the required torque. If leakage persists, install a new clamp.

2. Check the exhaust pipe, bellows, and each exhaust seal clamp for leakage, wear, cracks, or damage. Replace damaged components as needed. If leakage exists at a clamp, tighten the nuts to the required torque. If leakage persists, install a new exhaust seal clamp. Do not reuse seal clamps. Once a seal clamp is loosened or removed, it must be replaced.

Fig. 1, One-Box ATS Sensor Locations

- Sensors—detect temperatures and pressures in the ATS.

NOTE: The sensor box (item 8) contains the SCR inlet and outlet NOx sensors, DPF outlet pressure sensor, and the DOC inlet pressure sensor.

1. DOC Outlet Temperature Sensor
2. DOC Inlet Pressure Sensor Port
3. DOC Inlet Temperature Sensor
4. Front Heat Shield
5. DEF Nozzle
6. Exhaust Outlet
7. DEF Metering Unit
8. Sensor Box (see note above)
9. Exhaust Inlet
10. SCR Outlet Temperature Sensor
11. SCR Outlet NOx Sensor Port
12. SCR Inlet NOx Sensor Port
13. 14-Pin Connectors
14. DPF Outlet Pressure Sensor Port
15. SCR Inlet Temperature Sensor

08/20/2009

08/20/2009 f490355

90 90

08/20/2009 f490355

90 90

08/20/2009 f490355

90 90
A leak in the CGI piping, including the bellows, will allow unfiltered air and contaminants into the engine intake, and can cause serious engine damage.

NOTE: Because the CGI bellows is covered with a metal mesh, it is difficult to see cracks or damage that may cause a leak.

3. On vehicles with CAT engines, inspect the CGI bellows and piping for evidence of damage or leakage. See Fig. 5. If the bellows is damaged or leaking, replace it. See 49–02 for the replacement procedure.

4. If present, check the condition of the insulation material around the exhaust pipe between the turbocharger and the ATD.

5. Check the ATD mounting bands for tightness. Tighten to 30 lb·ft (41 N·m) if needed. Do not overtighten.

6. Check for leaks around the clamps that attach the ATD in the ATS, and around the clamps that retain the DPF in the ATD.

7. Check all sensors attached to the ATD for leaks or damaged wires. No leaks are allowed.

NOTICE

1. DEF Metering Unit
2. DEF Nozzle
3. SCR Outlet Temperature Sensor
4. SCR Inlet Temperature Sensor
5. DOC Inlet Temperature Sensor
6. DOC Inlet Pressure Sensor
7. DPF Inlet Temperature Sensor
8. DPF Outlet Pressure Sensor
9. DPF Outlet Temperature Sensor
10. DPF Outlet NOx Sensor
11. SCR Outlet NOx Sensor

Fig. 2, 2V2 Two-Box ATS Sensor Locations
8. Check the DPF exterior surface for dents or other damage. See Item A of Fig. 4. A dent over 3 inches (76 mm) in diameter and 1/4-inch (6-mm) deep could cause internal damage to the DPF, causing it to malfunction.

9. Check for heat discoloration on the surface of the ATD. Heat discoloration may indicate internal damage; especially around the DPF.

10. Check any wires, lines, or hoses within 4 inches (10 cm) of the exhaust system for heat damage. Repair or reroute as needed.

Pre-EPA07 Exhaust System Inspection

1. On all vehicles, check the condition of the muffler body and the top stack. Check the inlet/outlet tubes for leakage, dents, and corrosion, and
A. Inspect this area of the canister for dents.
1. Marmon Fitting at Inlet from Turbocharger
2. DOC Temperature Sensor
3. ATD Mounting Band
4. DPF Intake Pressure Sensor
5. DPF V-Band Mounting Clamps
6. Sensor Housing
7. DPF Outlet Temperature Sensor
8. Exhaust Outlet Marmon Fitting
9. DPF Outlet Pressure Sensor

Fig. 4, Typical EPA07 Aftertreatment Device

check for holes in the muffler. Replace parts as required. Use new parts, equivalent to parts originally installed on the vehicle.

Fig. 5, CAT EPA07 Exhaust Installation with CGI Bellows
2. Inspect the exhaust flex hose (see Fig. 6) for leakage, wear, or damage. Replace with new parts if replacement is needed.

3. Check for leakage at the V-band coupling, which attaches the exhaust pipe to the turbocharger exhaust outlet. See Fig. 6.

4. If leakage exists, tighten the nut on the V-band coupling 85 lbf-in (940 N·cm). If leakage persists, install a new V-band coupling.

5. Inspect the turbocharger outlet pipe, and replace it as needed.

6. Check the U-bolt clamps for tightness, and tighten as needed.

7. Check the isolator at the base and the top of the exhaust stack (see Fig. 7) for cracking, damage, and dry rot. Replace as needed.

8. Check for leakage at all wide-band exhaust clamps. See Fig. 8.

 If leakage exists, tighten the nuts 40 to 60 lbf-ft (54 to 81 N·m). If leakage persists, inspect the wide-band exhaust clamps. Install a new Donaldson SealClamp™ if necessary.

NOTICE

A leak in the CGI piping, including the bellows, will allow unfiltered air and contaminants into the engine intake, and can cause serious engine damage.

Fig. 6, V-Band Coupling and Flex Hose

Fig. 7, Exhaust Isolator

Fig. 8, Donaldson SealClamp Wide-Band Exhaust Clamp

49–02 CAT CGI Bellows Replacement

On vehicles with CAT EPA07 compliant engines, replace the CGI bellows at the M4 maintenance interval to prevent a later failure.
1. Park the vehicle, set the parking brake, chock the wheels.

2. Open the hood.

3. Remove the right side inner fender/splash shield as needed.

4. Remove the CGI piping between the engine and aftertreatment device (ATD).
 See Fig. 9.

5. On the workbench, remove the CGI bellows from the exhaust piping. Do not damage the piping.

 NOTE: The following step, and its substeps, is to be done without the bellows installed. This will align the pipes so that the bellows can be installed correctly.

6. Install the CGI piping (without CGI bellows) and align piping.
 6.1 Attach the aft CGI pipe to the ATD.
 6.2 Attach the forward CGI pipe to the engine.

 NOTICE

When the CGI pipes and bellows are installed, there should be approximately 3/4 inch (19 mm) clearance from the main bellows. Contact between the bellows could result in an exhaust leak, which in this case may allow ingestion of contaminants into the engine causing engine damage.

6.3 Use a straightedge to align the pipes so that the pipe ends that attach to the bellows are parallel and concentric.

Fig. 9, CAT EPA07 Exhaust Installation with CGI Bellows

NOTE

When shortening the CGI pipe(s), it is critical to leave a minimum of 1 inch (25.4 mm) of straight pipe on the end of each CGI pipe to allow for pipe insertion and clamp clearance. Failure to do this could result in an exhaust leak, which in this case may allow ingestion of contaminants into the engine causing engine damage.

7. Once the pipes are aligned, measure the pipe gap between the CGI pipes and record the distance. See Fig. 10, Ref. A.

 The existing pipe gap is designed at 10 inches (254 mm). A 10.75 inches (273 mm) pipe gap is required for the replacement CGI bellows and clamps. This requires one or both of the CGI pipes to be shortened.

8. Using a yellow paint pen, mark the pipes 1.5 inches (38 mm) in from the end of each pipe.
These two marks will be used to center the bellows between the two pipes.

9. Once the pipes are correctly aligned and separated at the correct distance, secure the aft CGI pipe to the ATD and to any CGI pipe support brackets.

10. Remove the forward CGI pipe from the truck.

11. Slide the slip clamp, with the retaining ring and graphite gasket ring, on the aft CGI pipe. See Fig. 11 for proper installation.

12. Slide the new bellows onto the aft CGI pipe as far as it will go. See Fig. 12, Ref. A. Measurement A should be at least 7/16 inch (10 mm) past the face of the flange.

13. Install the slip clamp with the retaining ring and graphite gasket ring onto the forward CGI pipe. See Fig. 13 for proper installation.

14. Slide the end of the forward CGI pipe into the bellows, and properly align the pipe.

15. Secure the forward CGI pipe to the engine and any CGI pipe support brackets.

16. Using the yellow marks, center the bellows between the exhaust pipes. Verify that the pipe is inserted at least 7/16 inch (10 mm) past the face of the flange. See Fig. 12, Ref. A.
17. Install the slip clamps on the bellows. Tighten the slip clamps 11 lbf·ft (15 N·m).

18. Start the engine and check for exhaust leaks. Tighten any clamps as needed.
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamic Component Inspection</td>
<td>60–03</td>
</tr>
<tr>
<td>Cab Suspension Inspection</td>
<td>60–01</td>
</tr>
<tr>
<td>Mirror Folding Check</td>
<td>60–02</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>60–00</td>
</tr>
</tbody>
</table>
60–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

60–01 Cab Suspension Inspection

1. On single and dual air spring systems, inspect the air spring(s) at the rear of the cab. Check for wear, air leaks, and damage. See Fig. 1 for typical single air spring suspension, Fig. 2 for a typical dual air spring suspension. Replace damaged components if necessary.

On combined air spring/shock absorber suspension, check for wear, air leaks, fluid leaks, and damage. See Fig. 3 for air spring/shock absorber suspension. Replace damaged components if necessary.

2. On single or dual air spring suspensions, check the distance between the top and bottom air spring mounting brackets. The air spring(s) should be inflated so that the distance between the top and bottom brackets measures 5-1/2 inches (140 mm). See Fig. 1 for typical single air spring suspension, Fig. 2 for a typical dual air spring suspension.

3. Inspect the cab suspension shock absorbers for wear, damage, or leaking fluid. See Fig. 1 for single air spring suspension, Fig. 2 for dual air spring suspension or, Fig. 3 for air spring/shock absorber suspension. Replace if necessary.
60-02 Mirror Folding Check

For vehicles with folding cab-mounted main mirrors, make sure that the mirrors fold freely on the pivot points. Pivot each mirror fully forward and backward two times to break loose any debris that may affect the fold-away feature of the mirror.

60-03 Aerodynamic Component Inspection

Inspect aerodynamic components, if equipped, for structural damage, cracks, or wear. These may include:

- Cab side extenders
- Roof fairing/deflector
- Bumper
- Hood
- Side fairings

Replace or repair damaged or missing components as needed.
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Seal, Door Latch, Door Hinge, and Door Check Lubrication.</td>
<td>72–01</td>
</tr>
</tbody>
</table>
72–01 Door Seal, Door Latch, Door Hinge, and Door Check Lubrication

NOTE: Light penetrating oils, such as WD–40, should not be used because they wash out beneficial factory-installed grease, and they evaporate.

Door Seals

Lightly coat the door seals with a lubricant that’s safe for rubber.

Door Latches

Wipe old grease and dirt from all door latch assemblies, then apply liberal amounts of an approved grease to each moving joint; see Table 1. Use an appropriate applicator that will not leave material behind.

Door Hinges

Lubricate external hinges every six months. Wipe old grease and dirt from the hinge, then force an approved grease into the hinge components; see Table 1. Use an appropriate applicator that will not leave material behind. Wipe off any excess grease.

Door Checks

Wipe old grease and dirt from door checks. Lubricate each moving joint of the door checks at installation and every six months thereafter, with an approved grease; see Table 1. Use an appropriate applicator that will not leave material behind.

<table>
<thead>
<tr>
<th>Application</th>
<th>Lubricant</th>
<th>NLGI Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Latches</td>
<td>ConocoPhillips Triton® 460</td>
<td>1.5</td>
</tr>
<tr>
<td>Door Checks</td>
<td>ConocoPhillips Megaplex® XD3</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1, Approved Grease
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioner Inspection</td>
<td>83–01</td>
</tr>
<tr>
<td>HVAC Air Filter Cleaning and Replacement</td>
<td>83–02</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>83–00</td>
</tr>
</tbody>
</table>
83–00 Safety Precautions

Safety Precautions in this section apply to all procedures within this group.

DANGER

When working on the vehicle, shut down the engine or motor, set the parking brake, and chock the tires. Before working under the vehicle, always place jack stands under the frame rails to ensure the vehicle cannot drop. Failure to follow these steps could result in serious personal injury or death.

83–01 Air Conditioner Inspection

WARNING

Wear eye protection, gloves, and protective clothing when working on the air conditioning system. Leaking refrigerant from a damaged hose or line could cause blindness or serious skin burns.

1. Park the vehicle on a level surface, apply the parking brake, and chock the tires.
2. Inspect the A/C compressor hub. A torn or melted rubber dampener (center section) indicates internal damage has occurred within the compressor. Inspect friction surfaces for wear, oil-soaked conditions, or discoloration due to excessive heat.
3. With the belt removed, check to make sure that the rotor (pulley) spins freely. It should not wobble or contact the hub when it is spinning. Using a feeler gauge, check the clearance between the rotor and hub at several locations, and average the results. See Fig. 1. See Table 1 for acceptable clearances.

For a Denso compressor, if the clearance is greater than 0.024 inch (0.6 mm), replace the clutch. For instructions, see Section 83.04, Subject 140 of the Western Star Workshop Manual.

For a Sanden compressor, if the drive plate clutch needs adjustment, see Section 83.01, Subject 130 of the Western Star Workshop Manual.

4. Check the overall condition of the air conditioning hoses. Look for cracks, cuts, and abrasions on the hoses. Replace damaged hoses. Also check for signs of loose fittings on all of the air conditioning components.

![Hub/Rotor Clearance](image)

See Table 1 for acceptable clearances.

Table 1, Acceptable Compressor Clutch Clearances

<table>
<thead>
<tr>
<th>Compressor</th>
<th>Acceptable Clearances: inch (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denso</td>
<td>0.014 to 0.024 (0.35 to 0.6)</td>
</tr>
<tr>
<td>Sanden</td>
<td>0.016 to 0.031 (0.40 to 0.78)</td>
</tr>
<tr>
<td>Climate Control</td>
<td>0.020 to 0.030 (0.50 to 0.76)</td>
</tr>
</tbody>
</table>

83–02 HVAC Air Filter Cleaning and Replacement

The cab HVAC assembly has either two pleated, dust/odor air filters that are not cleanable and must be replaced every three months, or two foam air filters with aluminum screens that can be cleaned every three months and replaced once a year.
Additionally, some vehicles are equipped with an HVAC pre-filter that should be cleaned every three months and replaced once a year.

On sleeper cabs, the sleeper HVAC assembly has either two pleated, dust/odor air filters that are not cleanable and must be replaced every three months, or two foam air filters with aluminum screens that can be cleaned every three months and replaced once a year.

Cab Fresh-Air Filter Replacement

1. Shut down the engine, set the parking brake, and chock the tires.

2. From inside the cab, remove the fasteners that attach the HVAC cover, if equipped, to the HVAC assembly. Remove the HVAC cover. See Fig. 2.

3. To access the air filters, remove the screws that attach the air filter cover to the HVAC assembly. Remove the air filter cover.

4. Remove the two air filters from the air intake plenum. See Fig. 3.

5. Install two new air filters in the air intake plenum. Make sure the arrow on the air filter is pointing in the direction shown in Fig. 3.

6. Using screws, attach the air filter cover to the HVAC assembly.

7. Attach the HVAC cover, if equipped, to the HVAC assembly.

Cab Fresh-Air Filter Cleaning, Foam Filters

1. Shut down the engine, set the parking brake, and chock the tires.

2. From inside the cab, remove the fasteners that attach the HVAC cover, if equipped, to the HVAC assembly. Remove the HVAC cover. See Fig. 2.
3. To access the air filters, remove the screws that attach the air filter cover to the air intake plenum. Remove the air filter cover.

4. Remove the two air filters from the air intake plenum. See Fig. 3.

5. Clean the air filters, as follows.
 5.1 Wash the air filters by flushing soapy water from the air-outlet side of the filter to the air-intake side of the filter.
 5.2 Rinse the air filters by flushing clear water from the air-outlet side of the filter to the air-intake side of the filter.
 5.3 Allow the air filters to air dry.

6. Install the air filters in the air intake plenum. Make sure the arrow on the air filter is pointing in the direction shown in Fig. 3.

7. Using screws, attach the air filter cover to the HVAC assembly.

8. Attach the HVAC cover, if equipped, to the HVAC assembly.

HVAC Pre-Filter Cleaning

NOTE: On vehicles equipped with an HVAC pre-filter, the pre-filter should be cleaned every three months and replaced yearly.

1. Shut down the engine and set the parking brake. Chock the tires.

2. Open the hood.

3. Remove the pre-filter mounted at the HVAC intake. See Fig. 4.

4. Clean the pre-filter, as follows.
 4.1 Wash the pre-filter by flushing soapy water from the air-outlet side of the filter to the air-intake side of the filter.
 4.2 Rinse the pre-filter by flushing clear water from the air-outlet side of the filter to the air-intake side of the filter.
 4.3 Allow the pre-filter to air dry.

5. Install the pre-filter, as removed.

Sleeper Fresh-Air Filter Replacement

1. Shut down the engine, set the parking brake, and chock the tires.

2. To access the sleeper HVAC assembly, enter the sleeper and remove the bottom drawer from the left-side cabinet.

3. Remove the air filters from the sleeper HVAC assembly. See Fig. 5.

4. Install new air filters in the sleeper HVAC assembly. Make sure the arrow on the air filter is pointing toward the sleeper HVAC assembly; see Fig. 5.

5. Install the drawer in the cabinet.
Sleeper Fresh-Air Filter Cleaning, Foam Filters

1. Shut down the engine, set the parking brake, and chock the tires.

2. To access the sleeper HVAC assembly, enter the sleeper and remove the bottom drawer from the left-side cabinet.

3. Remove the air filters from the sleeper HVAC assembly. See Fig. 5.

4. Clean the air filters, as follows.
 4.1 Wash the air filters by flushing soapy water from the air-outlet side of the filter to the air-intake side of the filter.
 4.2 Rinse the air filters by flushing clear water from the air-outlet side of the filter to the air-intake side of the filter.
 4.3 Allow the air filters to air dry.

5. Install the air filters in the sleeper HVAC assembly. Make sure the arrow on the air filter is pointing toward the sleeper HVAC assembly; see Fig. 5.

6. Install the drawer in the cabinet.
<table>
<thead>
<tr>
<th>Title of Maintenance Operation (MOP)</th>
<th>MOP Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hood Rear Support Lubrication</td>
<td>88–01</td>
</tr>
</tbody>
</table>
88–01 Hood Rear Support Lubrication

1. Apply the parking brakes and chock the tires.
2. Open the hood.
3. Clean both the hood- and cab-mounted hood rear support components with a soapy water solution.
4. Cover all contact surfaces of the hood rear support brackets and isolators with an approved multi-purpose, lithium-complex, soap-based grease; see Table 1.
5. Close the hood.

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Grease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevron</td>
<td>Delo Heavy Duty EP</td>
</tr>
<tr>
<td>Exxon</td>
<td>Unirex EP2</td>
</tr>
<tr>
<td>Mobil</td>
<td>Mobil Grease XHP 222</td>
</tr>
<tr>
<td>Shell</td>
<td>Retinax LC Grease</td>
</tr>
<tr>
<td>Texaco</td>
<td>Starplex 2</td>
</tr>
</tbody>
</table>

Table 1, Approved Suppliers of Multi-Purpose Lithium Grease